

Propuesta de una Red de Monitoreo Hidrológico para la Cuenca Madre de Dios, Perú.

Documento de Trabajo # 21 Autor: Bruce Forsberg Fecha: Setiembre 2013

Actualmente Perú tiene planes ambiciosos para el desarrollo económico en la cuenca Madre de Dios (Figura 1). En la parte central de la cuenca existen concesiones para la exploración de hidrocarburos, otras concesiones han sido otorgadas para la explotación minera y están ubicadas dentro de las cuencas Inambari, Colorado y la zona del Bajo Madre de Dios. Algunas de estas concesiones actualmente vienen siendo explotadas, en particular las zonas de Huaypetue, Caychihue, Guacamayo y Malinowski. Una parte importante de la región oriental de la cuenca también ha sido deforestada con fines de desarrollo urbano, agrícola y ganadero. En los últimos años la presencia de redes de comunicación terrestre se ha visto incrementada, destacando la Carretera Interoceánica Sur que cruza y "corta" la cuenca de este a oeste, y para las próximas décadas se tiene previsto la implementación de más vías adicionales que integrarán totalmente la cuenca. Asimismo, también ha sido propuesta la construcción de dieciséis represas para la cuenca Inambari, la cual proporcionará energía eléctrica a Perú y Brasil. Todas estas inversiones en infraestructura e industrias extractivas en conjunto han sido consideradas como una alternativa de prosperidad y crecimiento económico para esta región, considerada hasta hace poco geográficamente aislada. Estos cambios en el uso de la tierra propuestos para la cuenca Madre de Dios seguro ocasionarán significativos impactos ambientales, los cuales deben ser evaluados con la finalidad de alcanzar un desarrollo económico sostenible de la región.

Existen reportes acerca de los grandes cambios que se han producido con respecto a los procesos de erosión y sedimentación en zonas de extracción minera dentro de las cuencas Inambari, Colorado, y Tambopata, así como la contaminación por mercurio en los principales ríos y quebradas que forman parte de estas cuencas. Con la finalidad de evaluar estos impactos y otros asociados a la intervención de actividades humanas es muy importante desarrollar un programa de monitoreo efectivo que permita caracterizar la variabilidad de la precipitación, así como la descarga y química del agua en los principales ríos de la región. Actualmente, el Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) no cuenta con estaciones fluviométricas (registros de descarga) dentro de toda la cuenca Madre de Dios, y por el contrario mantiene en funcionamiento algunas estaciones pluviométricas (registros de precipitación). En este sentido, a continuación presentamos una propuesta para la implementación de una red de estaciones de registro fluviométrico y pluviométrico para toda la cuenca. Para el caso de la red de estaciones fluviométricas, se propone una implementación por etapas, priorizando estaciones en las desembocaduras de los mayores tributarios con la finalidad de registrar, en el breve plazo, cambios en erosión y sedimentación de las mayores áreas de drenaje. Más adelante, esta red puede expandirse a monitorear la desembocadura de tributarios en donde existen operaciones mineras, y por

último, en el largo plazo, hacia lugares donde se piensa que ocurrirán impactos causados por la construcción de represas u otros cambios en el uso de la tierra.

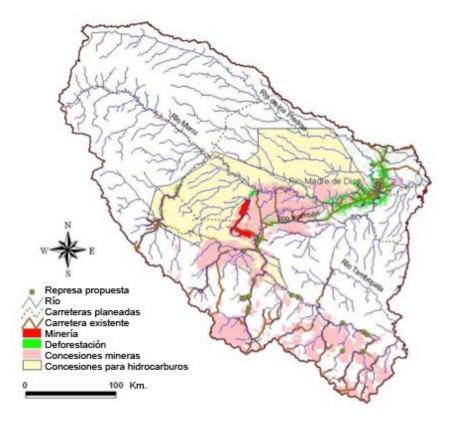


Figura 1. Uso actual de la tierra y propuestas en el cambio de uso en la cuenca Madre de Dios

Red Fluviométrica: La propuesta de una red de registro fluviométrico para la cuenca Madre de Dios se presenta en la Figura 2. La importancia y priorización de su implementación se muestra según el tamaño y color de los símbolos. Los dos símbolos azules grandes (Prioridad 1) indican estaciones para las desembocaduras de los ríos Madre de Dios y Tambopata. Estas estaciones registrarán los impactos de erosión y sedimentación que actualmente vienen ocurriendo como consecuencia de la minería y la desforestación en toda la cuenca, por tanto se deberían considerar como las más importantes e inmediatas estaciones a instalar. Las otras cuatro estaciones, indicadas en símbolos azules pequeños (Prioridad 2), se sugieren como las siguientes a considerar, las cuales se ubican en la desembocadura de los ríos Huaypetue, Caychihue y Malinowski y representarían registros de las mayores zonas mineras que actualmente existen dentro de la cuenca y de donde se estima que ocurren los mayores procesos de erosión y sedimentación. Es también urgente cuantificar estos impactos en estas localidades. Se propone que la cuarta estación debe estar ubicada en el Puente Inambari, sobre el río Inambari, ubicación que correspondería no solamente a una zona inmediatamente aguas abajo de la propuesta Central Hidroeléctrica Inambari, sino también estaría ubicada debajo de otras 15 represas propuestas en zonas más altas de la cuenca Inambari. Los datos que se generen en este punto se necesitan con suma urgencia pues van a permitir estimar los impactos a nivel regional de estas represas en el ciclo hidrológico y de sedimentos. Los símbolos verdes indican un nivel de Prioridad 3 y se ubican cerca de las desembocaduras de los ríos Inambari y Colorado, los cuales van a registrar patrones de erosión a gran escala que existen por la actividad minera en las zonas de Caychihue y Huaypetue. Los cuatro símbolos amarillos grandes representan un nivel de Prioridad 4, dos de ellos se proponen cerca de la desembocadura de los ríos Araza y Alto Inambari y serían

consideradas estaciones temporales que van a quedar inundadas por el reservorio Inambari. Sin embargo, hasta que esta represa se construya estas estaciones van a brindar una información preliminar muy importante sobre las características hidrológicas y de sedimentación de estos dos ríos, información base para la evaluación de los impactos de los 15 reservorios que se han planeado construir aguas arriba. Las otras dos estaciones (símbolos amarillos grandes) ubicadas a lo largo del canal principal del río Madre de Dios proveerán información sobre descarga de agua y de sedimentos, aguas arriba y aguas debajo de las zonas con mayores operaciones mineras, información necesaria para evaluar el efecto de estas actividades en el balance del ciclo de sedimentos a nivel regional. Los símbolos más pequeños en amarillo representan Prioridad 5 y se propone que estas estaciones se ubiquen cerca de las otras represas propuestas tanto aguas arriba como aguas abajo de la Central Hidroeléctrica Inambari, así como varias estaciones adicionales a lo largo del canal principal del río Madre de Dios y en algunos tributarios clave, información que también es necesaria para estimar los balances regionales de agua y sedimentos.

La mayoría de estaciones se encuentra ubicada cerca de vías terrestres ya existentes y en centros poblados con al menos 50 habitantes, con la finalidad de mantener acceso y mantenimiento de las estaciones de monitoreo. En general, las estaciones están propuestas para sitios que corresponden a uno sólo canal y lo suficientemente distantes de la desembocadura para evitar el efecto de aguas del tributario mayor en caso este último experimente algún aumento de nivel. También se ha tenido cuidado en evitar ubicar estas estaciones en canales que recientemente se han formado o han cambiado su ubicación debido a la dinámica misma del río. Algunas de las estaciones, sin embargo, están ubicadas en regiones donde la geomorfología de la región es muy dinámica, y por tanto sugerimos que la ubicación final de estas estaciones esté basada en un análisis temporal de imágenes de satélite y una inspección de campo. Una lista de estaciones fluviométricas indicando Número de Estación, Nombre de la Localidad, Nombre del Tributario y Coordenadas Geográficas (en grados decimales) se presentan en la Tabla 1.

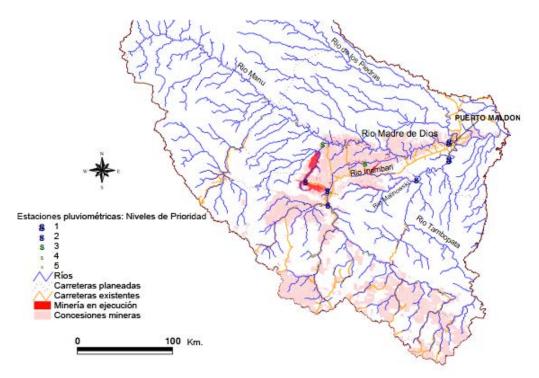


Figura 2. Red de estaciones fluviométricas propuestas para la Cuenca Madre de Dios

Las estaciones fluviométricas deben estar equipadas para desarrollar un monitoreo continuo del nivel del río. Idealmente este registro debe estar acompañado por un sensor hidrostático protegido y ubicado dentro de una toma de agua conectado, o a un recopilador de datos o a un enlace telemétrico ligado a una base de datos, a donde se almacenaría la información. No obstante, las reglas de registro del nivel del río también son de utilidad, siempre y cuando las medidas son tomadas varias veces al día por observadores locales. Las medidas de descarga de agua, velocidad media de la corriente, y concentración de sedimentos en suspensión deben hacerse a intervalos regulares (1-2 meses) para poder establecer la relación entre estos parámetros y el nivel de río en cada estación de monitoreo. Estas relaciones son de importancia crítica para evaluar los cambios en el transporte de sedimento debido a las actividades mineras. Los parámetros hidrológicos pueden ser colectados eficientemente con sensores acústicos para medir la velocidad de agua (sensores ADCP, por sus siglas en inglés Acoustic Doppler Current Profiler) o los correntómetros convencionales. La turbidez también puede ser registrada de manera continua en cada estación con sensores automáticos. Las medidas de turbidez pueden ser correlacionadas con la concentración de sedimentos para estimar de manera constante la concentración de sedimentos y flujo por cada lugar. Esta red de estaciones también podrá ser utilizada para otras necesidades según el tipo de impacto producido por otras actividades, pudiéndose colectar también muestras de agua para análisis químicos como concentración total de mercurio, arsénico, total de petróleo e hidrocarburos, y concentraciones totales de nutrientes

Tabla 1. Ubicación de las estaciones pluviométricas, por prioridad para su instalación

Número de	Ubicación	Río	Prioridad	Longitud	Latitud
Estación					
1	Boca Manu	Manu	5	-71.007197	-12.189977
2	Nuevo Edén	Alto Madre de	5	-71.036068	-12.364048
		Dios			
3	Sarayacu	Inambari	3	-70.037519	-12.793730
4	Puerto	Madre de Dios	1	-69.230815	-12.580897
	Maldonado				
5	Puente	Inambari	2	-70.383577	-13.185559
	Inambari				
6	Infierno	Tambopata	1	-69.229296	-12.734980
7	Colpayoc	Rio de las Piedras	5	-69.269902	-12.319244
8	Lanlacuni	San Gabán	5	-70.414645	-13.475617
9	INA 88	Alto Inambari	5	-69.980290	-13.646268
10	Ollachea	San Gabán	5	-70.472404	-13.799901
11	San Jose	Alto Inambari	5	-69.295646	-14.164441
12	Casa Huiri	San Gabán	5	-70.461311	-13.635657
13	Sayapia	San Gabán	5	-70.463059	-13.753374
14	Angel III	Chiamayu	5	-70.503844	-13.659939
15	Angel II	Chiamayu	5	-70.519931	-13.667963
16	Angel I	Chiamayu	5	-70.536881	-13.664002
17	Sandia	Sandia	5	-69.505839	-14.164013
18	Calapampa	Alto Inambari	5	-69.519302	-13.898019
19	Selva Alegre	Alto Inambari	5	-69.301414	-13.974008
20	Naranjani	Alto Inambari	5	-69.266296	-14.001623
21	INA90	Alto Inambari	5	-70.037074	-13.630499
22	Palma Real	Madre de Dios	5	-68.766963	-12.501754
23	Blanquillo	Madre de Dios	4	-70.700883	-12.418218
24	Los Amigos	Madre de Dios	5	-70.100109	-12.573790
25	Horacio	Madre de Dios	5	-69.654052	-12.726126
	Cevallos				
26	Boca	Malinowski	2	-69.538327	-12.935616
27	Liberdad	Huaypetue	2	-70.603717	-12.969191
28	Puerto Punquiri	Caychihue	2	-70.391049	-13.047566
29	Nuevo San Juan	Madre de dios	4	-70.221378	-12.623976

30	Bajo Colorado	Colorado	3	-70.449428	-12.622294
31	Otorongo Chico	Araza	4	-70.448592	-13.184246
32	Ayapata	Alto Inambari	4	-70.340351	-13.248008
33	Estrada	Dos de Mayo	5	-70.355096	-13.069285

Red pluviométrica: SENAMHI cuenta con 13 estaciones meteorológicas en funcionamiento en la cuenca Madre de Dios, la mayoría de ellas están ubicadas en la parte sur de la cuenca y en zonas alto andinas. A esta red de estaciones proponemos que se agreguen 49 estaciones nuevas con la finalidad de crear un sistema de monitoreo mucho más efectivo (Figura 3), el cual estaría basado en una configuración y distribución más uniforme de las estaciones que permita una triangulación entre ellas. Originalmente quizá esta distribución de estaciones no fue posible debido la falta de centros poblados en la mayor parte de la cuenca, tanto al sur como al norte, esencial para la manipulación y registro de los pluviómetros. Asimismo, en esta propuesta hemos tratado de distribuir las estaciones de manera uniforme a lo largo del gradiente altitudinal, ya que se ha demostrado que tanto la lluvia como la escorrentía varían de manera inversa con la elevación. En general, se propone que las nuevas estaciones pluviométricas se ubiquen cerca de comunidades y centros poblados con más de 50 habitantes, al menos que no existan otras poblaciones disponibles en la región. A continuación proponemos una lista de estaciones pluviométricas indicando Número de Estación, Nombre de la Localidad, Elevación y Coordenadas Geográficas, se presentan en la Tabla 2.

Tabla 2. Propuesta de Estaciones Pluviométricas para la cuenca Madre de Dios

Número de	Localidad	Longitud	Latitude	Elevación	Estado
Estación				(msnm)	
1	Cuyo Cuyo	-69.54222156	-14.47444647	3555	Activa
2	Limbani	-69.69472142	-14.11833565	3010	Activa
3	Macusani	-70.42361271	-14.06778004	4331	Activa
4	Ollachea	-70.49111262	-13.81333436	3420	Activa
5	PAKITZA	-71.28305673	-11.94444537	319	Activa
6	Pilcopata	-71.01694362	-13.08361296	900	Activa
7	Puerto	-69.22152812	-12.59857625	243	Activa
	Maldonado				
8	Quincemil-	-70.75027848	-13.21694654	651	Activa
	693				
10	Sina	-69.28361257	-14.50027991	2931	Activa
11	Tambopata-S.	-69.15222349	-14.22000033	1340	Activa
	Juan del Oro				
12	Acjanaco	-71.61999936	-13.19639156	3487	Activa
13	Chontachaca	-71.46777917	-13.02389147	982	Activa
14	Chilichile	-70.89858377	-13.49079746	1700	Propuesta
15	Salvacion	-71.32110919	-12.84579738	518	Propuesta
16	Libia Chica	-70.91289059	-11.65790970	417	Propuesta
17	Yomibato	-71.87382063	-11.76078477	431	Propuesta
18	Lechemayo	-70.30856061	-13.27506058	385	Propuesta
	Chico				
19	Punkiri Chico	-70.36647004	-12.91644661	341	Propuesta
20	Monte	-70.11083903	-11.94126204	276	Propuesta
	Salvado				
21	Baltimori	-69.51163027	-12.89328840	221	Propuesta
22	La Distancia	-69.76602749	-12.88188221	234	Propuesta
23	Boca	-70.39382346	-12.61810074	240	Propuesta
	Colorado				
24	Tayacome	-71.64918137	-11.72238192	375	Propuesta
25	Boca Manu	-70.93376637	-12.26797989	306	Propuesta
26	San Lorenzo	-70.53904765	-13.18304271	763	Propuesta
27	San Ignacio	-68.94966776	-14.02230281	1000	Propuesta
	-				

28	Oroya	-69.79097980	-13.72425838	792	Propuesta
29	Coasa	-70.01989639	-13.98551989	3745	Propuesta
30	Tambillo	-70.21788741	-13.87626422	3915	Propuesta
31	Esquilaya	-70.19300049	-13.49910348	722	Propuesta
32	Pumachanca	-70.70883378	-13.67534956	4708	Propuesta
33	Mamaria	-71.84702448	-12.77176307	2093	Propuesta
34	Casa	-72.08711068	-11.59120420	379	Propuesta
	Machiguenga				
35	Millo Chico	-70.84304120	-13.84411600	5137	Propuesta

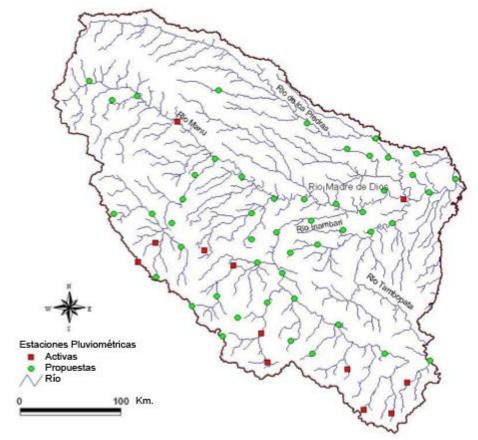


Figura 3. Red de estaciones pluviométricas propuestas para la cuenca Madre de Dios.

Esta red de estaciones meteorológicas ha sido diseñada principalmente para generar datos de precipitación, que en conjunto con los registros de descarga, puedan ser utilizados para desarrollar modelos hidrológicos y de escorrentía. Estos datos también pueden ser colectados con un pluviómetro con cubeta basculante conectado a un colector de datos o transmitido por telemetría a una base de datos. También se pueden colectar otras variables de manera simultánea tales como radiación solar, velocidad y dirección del viento, y humedad relativa. Estos datos pueden ser usados en otros análisis ambientales y van a contribuir a la base de datos meteorológicos nacional a cargo de SENAMHI. Esta red de estaciones meteorológicas también puede ser utilizada, dependiendo de las necesidades, para colectar muestras de agua de lluvia para análisis químicos, tales como mercurio y carbón negro, etc.

Se sugiere citar:

Forsberg, B. 2013. Propuesta de una Red de Monitoreo Hidrológico para la Cuenca Madre de Dios, Perú. Documento de Trabajo #21. Wildlife Conservation Society, Lima, Perú.