

Calidad del agua en el sur de Ahuachapán, El Salvador, C.A.

Municipios de Tacuba, San Francisco Menéndez, Jujutla, Guaymango y San Pedro Puxtla del departamento de Ahuachapán y cantón Metalío del municipio de Acajutla, departamento de Sonsonate

Proyecto: Manejo Integrado de Cuencas Asociadas al Complejo Hidrográfico El Imposible-Barra de Santiago (BASIM)

Calidad del agua en el sur de Ahuachapán, El Salvador, C.A.

Municipios de Tacuba, San Francisco Menéndez, Jujutla, Guaymango y San Pedro Puxtla del departamento de Ahuachapán y cantón Metalío del municipio de Acajutla, departamento de Sonsonate

Proyecto: Manejo Integrado de Cuencas Asociadas al Complejo Hidrográfico El Imposible-Barra de Santiago (BASIM)

Ahuachapán, El Salvador, Septiembre de 2005

Créditos

Calidad del agua en el sur de Ahuachapán, El Salvador, C.A.

Municipios de Tacuba, San Francisco Menéndez, Jujutla, Guaymango y San Pedro Puxtla del departamento de Ahuachapán y cantón Metalío del municipio de Acajutla, departamento de Sonsonate

· Investigadora

Dorys Fajardo-Ecotecnóloga

Equipo de la Unión Mundial para la Naturaleza -UICN-Grethel Aguilar

Directora Regional de UICN, Oficina Regional para Mesoamérica

Dirección: 146-2150 Moravia, San José, Costa Rica, C.A.

Teléfono: (506) 241-0101 y Fax: (506) 240-9934

Rocío Córdoba

Coordinadora de la Unidad de Gestión del Agua

Moravia, San José, Costa Rica, C. A.

Teléfono: (506) 241-0101

Equipo técnico de Proyecto UICN/BASIM en El Salvador

Maritza Guido Martínez-Gerencia

Nicolás Atilio Méndez Granados-Desarrollo Sostenible

Karla Castro Molina-Asistente Técnico

Rosa Orellana Castillo-Apoyo Logístico y Administrativo Mario Enrique Sagastizado Méndez-Recursos Hídricos

Coordinación técnica y revisión del documento

Maritza Guido Martínez-Gerencia Proyecto UICN/BASIM

· Diseño y diagramación

Centro Integral de Comunicaciones y Periodismo -CICOP-cicop@navegante.com.sv

Fotografía de portada

Poblador del municipio de San Francisco Menéndez, participa en el monitoreo de la calidad del agua, julio de 2005

• Disponible en:

Centro de Información y Documentación

Dr. Enrique J. Lahmann Z.

UICN-Unión Mundial para la Naturaleza,

Oficina Regional para Mesoamérica

Apdo. 146-2150, Moravia, San José, Costa Rica, C.A.

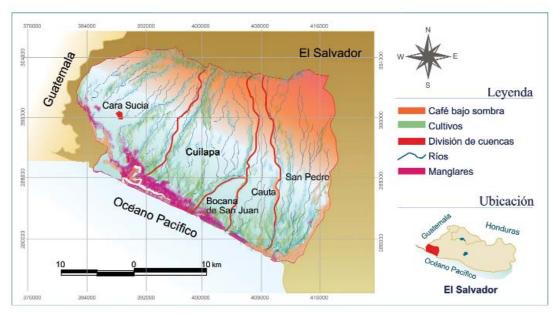
Teléfono: (506) 241-0101 y Fax: (506) 240-9934 Correo electrónico: mesoamérica@iucn.org Página web: www.iucn.org/mesoamerica

© 2006. Unión Internacional para la Conservación de la Naturaleza y de los Recursos Naturales

Se autoriza la reproducción de esta publicación para fines educativos u otros no comerciales sin necesidad de obtener la autorización previa del titular de los derechos de autor, siempre y cuando se cite la fuente. Se prohíbe la reproducción parcial o total de esta publicación para su venta u otros fines comerciales, sin la autorización previa del titular de los derechos de autor.

San Salvador, El Salvador, Septiembre de 2005.

Índice


Się	glas	6
Pı	oyecto UICN/BASIM	7
	Objetivos	8
	Resultados esperados	8
1.	Introducción	9
	1.1 Ubicación geográfica	10
	1.2 Justificación	10
	1.3 Objetivos	10
2.	Descripción del estudio	11
	2.1 Metodología	11
	Resultados de monitoreos sobre la calidad del agua realizados por el	
	Proyecto UICN/BASIM en agosto de 2005	13
	3.1 Resultados de monitoreos en ríos	14
	3.2 Resultados de monitoreos en pozos	15
	Resultados de monitoreos sobre la calidad del agua realizados por diferentes OG y ONG entre los años 1999 a 2005	40
	•	16
	4.1 Resultados de monitoreos en agua superficial	18
	4.2 Resultados de monitoreos en agua subterránea	35
	4.3 Conclusión	39
5.	Conclusiones	40
6.	Recomendaciones	41
7.	Bibliografía	42
8.	Anexos	44

Índice de cuadros

Cuadro 1	Proyecto UICN/BASIM	12
Cuadro 2	Monitoreo en el río Cara Sucia (San Francisco Menéndez)	14
Cuadro 3	Monitoreo en pozos del sistema de abastecimiento de agua (Acajutla y San Francisco Menéndez)	15
Cuadro 4	Monitoreos en agua superficial y subterránea por diferentes OG y ONG entre 1999 a 2005	17
Cuadro 5	Monitoreo en el nacimiento El Salto (San Pedro Puxtla)	18
Cuadro 6	Monitoreo en sistema de agua de la comunidad Hoja de Sal (Jujutla)	19
Cuadro 7	Monitoreo en el río Cuilapa (Jujutla)	19
Cuadro 8	Monitoreo en el río Güiscoyol (Guaymango)	20
Cuadro 9	Monitoreo en el río Metal (Guaymango)	20
Cuadro 10	Monitoreo en el río El Rosario (Guaymango)	20
Cuadro 11	Monitoreo en el río Cuilapa (Jujutla, abril de 2001)	21
Cuadro 12	Monitoreo en el río El Rosario (Guaymango, mayo de 2001)	21
Cuadro 13	Monitoreos en nacimientos fuente Sánchez, Ceibita y Familia García Sandoval (Guaymango)	22
Cuadro 14	Monitoreos en los nacimientos Adolfo Alvarenga y Juan Orellana (continuación)	22
Cuadro 15	Monitoreo en la quebrada Güiscoyol (Guaymango)	23
Cuadro 16	Monitoreos en los nacimientos del caserío Cuilapa (Jujutla, 2003)	24
Cuadro 17	Monitoreos en nacimientos de los cantones El Diamante y San Antonio Arriba (Jujutla, 2003)	25
Cuadro 18	Monitoreo en el nacimiento de la comunidad Talpetate (San Francisco Menéndez, julio de 2004)	26

Cuadro 19	(Jujutla, julio de 2004)	27
Cuadro 20	Monitoreos en los nacimientos El Escondido y El Ciprés II (Jujutla, julio de 2004)	28
Cuadro 21	Monitoreo en el río Faya (Jujutla)	29
Cuadro 22	Monitoreo en el río Ahuachapío (San Francisco Menéndez)	29
Cuadro 23	Monitoreo en el río Santa Rita (San Francisco Menéndez)	30
Cuadro 24	Monitoreo en el río San Pedro (San Pedro Puxtla)	31
Cuadro 25	Monitoreo en el río Tapahuashuya (Guaymango)	31
Cuadro 26	Monitoreo en el río Zapúa (Jujutla)	32
Cuadro 27	Monitoreo en el río Guayapa (Jujutla)	33
Cuadro 28	Monitoreo en el río El Naranjo (Jujutla)	33
Cuadro 29	Monitoreo en el río Cara Sucia (San Francisco Menéndez)	34
Cuadro 30	Monitoreo en el río El Rosario (Guaymango)	34
Cuadro 31	Monitoreos en pozos del caserío Puente Arce, cantón Jocotillo y del cantón Cara Sucia (San Francisco Menéndez)	35
Cuadro 32	Monitoreo en pozo de la comunidad El Quebracho, cantón San Antonio (Jujutla)	36
Cuadro 33	Monitoreo en pozo de la comunidad El Quebracho, cantón San Antonio (continuación)	36
Cuadro 34	Monitoreos en pozos artesanales del municipio de San Francisco Menéndez, 2004	37
Cuadro 35	Monitoreo en pozo del caserío El Cocalito, cantón San Antonio (Jujutla)	38

SIGLAS	
ADESCO	Asociación de Desarrollo Comunal
CONACYT	Consejo Nacional de Ciencia y Tecnología
CORDURGUATEX	Junta Administradora del Sistema de Agua Potable de los Cantones El Cortez, El Durazno, Guachipilín y Texispulco
ISTA	Instituto Salvadoreño de Transformación Agraria
MAG	Ministerio de Agricultura y Ganadería
MARN	Ministerio de Medio Ambiente y Recursos Naturales
MSPAS	Ministerio de Salud Pública y Asistencia Social
OMS	Organización Mundial de la Salud
UE	Unión Europea
UICN/BASIM	Unión Mundial para la Naturaleza/Proyecto Manejo Integrado de Cuencas Asociadas al Complejo Hidrográfico El Imposible-Barra de Santiago
UNESCO	Organización de Naciones Unidas para la Educación, la Ciencia y la Cultura

Mapa de ubicación geográfica de la región hidrográfica Cara Sucia-San Pedro Belén (Región C)

Proyecto UICN/BASIM

El Proyecto "Manejo Integrado de Cuencas Asociadas al Complejo Hidrográfico El Imposible-Barra de Santiago" (BASIM) es un esfuerzo demostrativo ejecutado por socios locales con apoyo de la Unión Mundial para la Naturaleza (UICN).

Los socios institucionales son el Ministerio de Medio Ambiente y Recursos Naturales (MARN); Ministerio de Agricultura y Ganadería (MAG); Fundación Ecológica de El Salvador (SALVANATURA); Unidad Ecológica Salvadoreña (UNES) y Universidad Nacional de El Salvador/Facultad de Agronomía y Química. La Oficina Regional de UICN para Mesoamérica (ORMA) atiende el seguimiento y apoyo de los proyectos de campo de la Iniciativa de Agua y Naturaleza (WANI, por sus siglas en inglés) en donde el Proyecto BASIM forma parte.

La Iniciativa de Agua y Naturaleza es un marco de acción lanzado en el año 2000 para implementar el manejo integrado de los recursos hídricos utilizando una perspectiva de ecosistemas dentro de las cuencas hidrográficas. La iniciativa realiza acciones puntuales en regiones geográficas específicas.

Dentro de las metas que se ha establecido la Iniciativa de Agua y Naturaleza se encuentran:

- Proteger los hábitats de agua dulce críticos y sus especies a través del uso sostenible del agua y el suelo.
- Dar poder a grupos locales para que desarrollen prácticas responsables en relación al uso del agua.
- Promover la voluntad política y buen gobierno para evitar y mitigar conflictos relacionados con el uso del agua.
- Incorporar los valores económicos, ecológicos, culturales e intrínsecos de los ecosistemas.
- Utilizar la información y conocimiento científico y local para mejorar el manejo del agua dulce y ecosistemas relacionados.
- Crear conciencia en las personas sobre el papel que juegan los ecosistemas en la protección y uso sostenible del agua.

Taller sobre caracterización de la microcuenca del río San Francisco. Miembros de la comunidad Tamasha, 2005

Educación ambiental en el municipio de Jujutla en coordinación con la microregión de Ahuachapán Sur, 2005

Capacitación técnica a pobladores/as del sur de Ahuachapán sobre cómo monitorear la calidad del agua, Proyecto UICN/BASIM, 2005

La región hidrográfica Cara Sucia-San Pedro Belén, denominada Región C, se ubica al sur de la zona occidental de El Salvador, aledaña a la cuenca del río Paz, en el departamento de Ahuachapán.

Objetivos

- Que los actores locales consoliden en la zona un mecanismo para coordinar y manejar los recursos hídricos con enfoque de ecosistemas.
- 2. Que los actores locales cuenten con información suficiente sobre la cual puedan tomar decisiones más acertadas para planificar y hacer un buen manejo del agua.
- 3. Que los actores locales pongan en marcha casos pilotos que contribuyan al manejo eficiente del agua y al equilibrio entre el uso y la conservación de los ecosistemas.
- 4. Que los actores locales posean un mayor nivel de conciencia ambiental y comiencen a cambiar su conducta con respecto al ambiente.

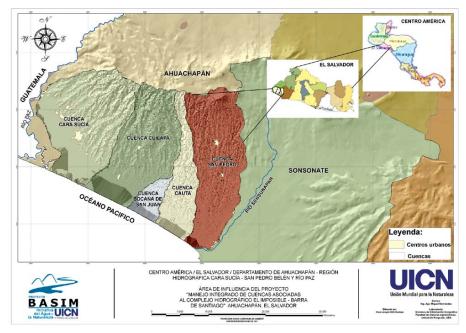
Resultados esperados

- 1. Empoderamiento de las organizaciones locales en un mecanismo de coordinación de cuencas.
- 2. La información generada será utilizada por los actores en la toma de decisiones en el manejo del agua.

1. Introducción

El agua es un elemento básico para la vida de los seres humanos, las plantas y los animales. Es, además, imprescindible para el desarrollo de la agricultura e industria de un país, por tanto, su escasez o abundancia determinan el potencial productivo de una región.

Sin embargo, son los seres humanos quienes más inciden en la calidad y disponibilidad del agua tanto superficial como subterránea, pues a medida que las poblaciones crecen, la necesidad de abastecimiento es mayor y al mismo tiempo la cantidad apta para el consumo disminuye.


Cuando las aguas residuales, excretas y desechos agroindustriales son devueltas a un río, lago, mar, etc., sin depurarse estas afectan o contaminan el cuerpo de agua que las recibe, provoca una disminución del recurso y afecta la vida acuática; en resumen, se altera el equilibrio ecológico.

Todo este proceso convierte el agua en un vehículo de enfermedades, tales como la fiebre tifoidea, la hepatitis A, el cólera, la disentería y gastroenteritis, entre otras. La calidad del agua está ligada al proceso salud-enfermedad por eso es importante realizar monitoreos continuos en el agua natural y en el sistema de agua potable que permitan conocer su condición y tomar las medidas preventivas en cuanto a su uso.

Ante la importancia que tiene conocer la calidad del agua para la salud, la agricultura y para la mayoría de las actividades industriales, el presente documento muestra el estudio sobre la calidad del agua realizado en los municipios del sur de Ahuachapán y Sonsonate.

En primer lugar, se exponen los resultados de los monitoreos en agua superficial y subterránea desarrollados por el Proyecto UICN/BASIM, durante el mes de agosto de 2005.

En segundo lugar, se muestra el análisis de los monitoreos en agua superficial (ríos, nacimientos o manantiales y quebradas) y agua subterránea (pozos perforados y artesanales), realizados por diferentes OG y ONG entre 1999 a 2005.

Mapa de la región hidrográfica Cara Sucia-San Pedro Belén, departamento de Ahuachapán, El Salvador

1.1 Ubicación y descripción geográfica

La región hidrográfica Cara Sucia-San Pedro Belén (Región C), se ubica al Sur Occidental de El Salvador, aledaña a la cuenca río Paz, en la frontera con Guatemala. Se extiende desde la cordillera Apaneca-llamatepec hasta el Océano Pacífico. Las coordenadas geográficas son 90° 05' y 89° 50' Longitud Oeste y 13° 35' y 13° 53' Latitud Norte.

La Región C está compuesta por cinco cuencas prinicipales: Cara Sucia, Cuilapa, Bocana San Juan, Cauta y San Pedro, que cubren una área de 769.16 km. de acuerdo al Servicio Hidrológico del Servicio Nacional de Estudios Territoriales de El Salvador (SNET, 2005). Las primera dos cuencas se encuentran asociadas al complejo de áreas naturales protegidas del Parque Nacional El Imposible (PNEI), manglares costeros y bosques temporalmente inundados. El resto de las cuencas se asocian a zonas de cafetales bajo sombra y áreas agrícolas.

1.2 Justificación

Actualmente existe mucha información sobre monitoreos llevados acabo en diferentes fuentes hídricas, sin embargo, no es accesible para hacer nuevas investigaciones, ni para que la población realice acciones encaminadas a mejorar la calidad del agua y protegerla de la contaminación.

Es necesario generar datos de referencia que permitan hacer un estudio comparativo y determinar si la calidad del agua mejora o decae con el paso del tiempo.

1.3 Objetivos

Objetivos generales

- Investigar la calidad del agua superficial y subterránea que sirve de abastecimiento para algunas comunidades y evaluar la eficiencia de los biofiltros de arena instalados para potabilizar el agua en algunos hogares ubicados dentro del área en estudio.
- Recopilar información sobre estudios anteriores en las cuencas del sur de Ahuachapán para analizar tendencias de evolución o retroceso de la calidad del agua.

Objetivos específicos

- Elaborar material de apoyo, relacionado con el monitoreo de la calidad del agua, que sirva de guía a las organizaciones locales y a sus líderes para la vigilancia del control de calidad.
- Impartir a líderes comunales capacitaciones teórico-prácticas sobre cómo tomar muestras de agua para análisis de laboratorio y sobre realización de pruebas de campo e intepretación de resultados.
- Producir un documento que contenga la información recopilada y la evaluación del estado de la calidad actual del agua en el sur de Ahuachapán, para que sirva de referencia para futuros estudios.

2. Descripción del estudio

En julio de 2005, el Proyecto UICN/BASIM realiza el monitoreo sobre la calidad del agua y el fortalecimiento de las capacidades locales.

Se capacitaron a las Juntas Administradoras de Sistemas de Agua, Asociación de Desarrollo Comunitario (ADESCO), Comités de Microcuenca y otros actores locales, para que desarrollaran controles de calidad del agua en sus comunidades.

Cuenca hidrográfica

Es el área de recogimiento de aguas lluvias, cuyas escorrentías superficiales fluyen a través de un sistema de drenaje hacia un colector común, que generalmente puede ser un río, laguna, lago o el mar. Una cuenca hidrográfica está integrada por subcuencas, las cuales a su vez se componen por microcuencas

La investigación incorpora los resultados de monitoreos en agua superficial y subterránea realizados por el Proyecto UICN/BASIM y por distintas OG y ONG en la zona de influencia del proyecto durante los años 1999 a 2005.

2.1 Metodología

Los pasos fueron los siguientes:

El primer paso consistió en brindar una capacitación teóricopráctica a los líderes representantes de las organizaciones
citadas en aspectos como: calidad del agua, parámetros a
considerar en cada caso, técnicas de muestreo, formularios de
campo e interpretación de resultados de análisis de laboratorio.
Se les instruyó también en la toma de muestras para analizar
parámetros físicos-químicos y bacteriológicos en diferentes
sistemas y mediciones, como por ejemplo: pH, temperatura,
cloro residual y observación de parámetros físicos. En esta
capacitación participaron algunos promotores de salud e inspectores de saneamiento del Ministerio de Salud Pública y
Asistencia Social (MSPAS) que trabajaban en la zona de
influencia del Proyecto UICN/BASIM.

Luego, se monitoreó la calidad del agua del río Cara Sucia; de algunos biofiltros de arena; de un sistema de abastecimiento de agua potable y una planta de tratamiento de aguas residuales. De todos estos lugares se tomaron muestras para analizar los parámetros físicos-químicos y microbiológicos. El pH y la temperatura se midieron en el campo y las muestras para análisis químicos y bacteriológicos se enviaron al laboratorio.

Al final, se procedió a la recolección bibliográfica de los resultados de análisis de laboratorio realizados en diferentes cuerpos de agua de la zona por diferentes OG y ONG, con el objetivo de recoger la mayor cantidad de información disponible que permitiera hacer una comparación de la evolución de calidad del agua en el tiempo y contar con datos de base para la implementación de un plan de monitoreo. Los parámetros evaluados por dichas instituciones son los que, a juicio de sus auspiciadores les proporcionaban la información necesaria para sus objetivos.

La recolección requirió de entrevistas a líderes comunales, representantes y empleados de organizaciones locales que coordinaron y/o participaron con las otras instituciones en la realización de los monitoreos; además se revisaron los planes de manejo de las microcuencas de los ríos San Pedro, Tapahuashuya, Santa Rita y Ahuachapío, elaborados por el Proyecto Agua-Socio SalvaNATURA.

El número de parámetros indicativos del grado de contaminación del agua es tan amplio que obliga a seleccionar aquellos más relevantes y que proporcionen mayor grado de información. Para el caso de los análisis realizados por el Proyecto UICN/BASIM dichos parámetros se encuentran divididos en: físicos-químicos y microbiológicos.

Capacitación técnica a pobladores/as del sur de Ahuachapán sobre cómo monitorear la calidad del agua, Proyecto UICN/BASIM, 2005

Cuadro 1. Lista de parámetros analizados en el área de estudio por el Proyecto UICN/BASIM

Parámetros	Unidades	Rangos permisibles
Temperatura del agua	°C	18 a 30 °C
PH	Unidades	6.0 a 8.5
Turbidez	FTU o UNT	1 a 5
Conductividad	μmhos/cm. A 25 °C	500 a 1600
DBO ₅ , 20°	mg/l	3.0 - 4.0
Nitratos [#]	mg/l	45
Nitritos [#]	mg/l	0.1
Fosfatos	mg/l de P	0.1
Coliformes fecales	UFC/100 ml	0
Coliformes totales	UFC/100 ml	0
Escherichia Coli	UFC/100 ml	0

Fuente: elaboración propia

Nota:

La Norma Salvadoreña Obligatoria de Agua Potable fue creada y editada por el Ministerio de Salud Pública y Asistencia Social; luego el Concejo Nacional de Ciencia y Tecnología (CONACYT) hizo una adaptación de la Guía para la Calidad del Agua Potable de la Organización Mundial de la Salud (OMS). Esta norma tiene como objetivo definir las características físicas, químicas, microbiológicas y radioactivas que debe presentar el agua para consumo humano; el establecimiento de valores recomendados para su calidad, procedimientos, registros, frecuencia mínima de muestreo y métodos estandarizados que deben ser utilizados por entes municipales o de servicio público encargados de velar por el servicio del agua en la República de El Salvador.

Tanto en el área urbana y rural, con cualquier sistema de abastecimiento que se utilice, en lo relativo a prevención y control de la contaminación de las aguas, debe tomarse en cuenta la Norma Salvadoreña Obligatoria. Todas las empresas o instituciones ya sean públicas o privadas cuya función sea abastecer o comercializar agua, tienen la obligación de respetarla. La Institución encargada de la vigilancia y cumplimiento de la Norma Salvadoreña Obligatoria de Agua Potable es El Ministerio de Salud Pública y Asistencia Social.

3. Resultados de monitoreos sobre la calidad del agua

Antes de conocer los resultados es importante definir cada una de las fuentes hídricas analizadas.

El agua superficial es aquella que se encuentra en el seno de los ríos, quebradas y nacimientos o manantiales; es utilizada principalmente para el uso doméstico, industrial y agrícola. Recibe ese nombre porque se encuentran sobre la superficie del suelo y no hay necesidad de utilizar bombas u otros equipos para extraerla. Esta fuente hídrica ha sufrido grandes alteraciones debido a la deforestación y contaminación con desperdicios humanos, industriales y agroindustriales, que en algunos casos, han llevado a la muerte del cuerpo del agua.

Los ríos son pequeñas áreas geográficas donde se originan los drenajes de agua, normalmente siguen un curso superficial y puede continuar hacia una corriente de agua más o menos caudalosa como un lago o un mar.

Los nacimientos o manantiales sirven para abastecer por lo menos a una comunidad, algunas veces estos son la fuente de un sistema formal de abastecimiento de agua por tubería -"agua potable"- que es administrado por una junta directiva, conformada por personas residentes en las comunidades abastecidas por este sistema.

Las quebradas son ríos que por diversas razones han muerto y por tanto han perdido su caudal o lo mantienen muy pobre y sólamente sirve para conducir aguas lluvias.

El agua subterránea es la que se filtra en el terreno pudiendo aflorar en forma de manantiales, sufre modificaciones al atravesar las capas terrestres porque pierde oxígeno debido a los ácidos y minerales. Se puede captar por medio de galerías filtrantes, pozos poco profundos y muy profundos, es de donde la mayoría de comunidades se abastece. Además, alimenta los mantos acuíferos y evita que las sales emerjan a la superficie.

3.1 Resultados de monitoreo en ríos

Cuadro 2. Monitoreo en el río Cara Sucia (San Francisco Menéndez)

Parámetros	Unidades	Punto 1	Punto 2
Temperatura del agua	°C	26	31
PH	Unidades	7.6	8.2
Turbidez	FTU	2	5
Conductividad	µmhos/cm	156.3	151.3
DBO ₅ , 20°	mg/l	3	4
Nitratos#	mg/l	0.88	0.88
Nitritos [#]	mg/l	0.121	0.255
Fosfatos	mg/l	0.29	0.07
Coliformes fecales	UFC/100 ml	1,000	18,200
Coliformes totales	UFC/100 ml	1,000	24,400
Escherichia Coli	UFC/100 ml	1,000	17,900

Punto 1 aguas arriba y Punto 2 aguas abajo

Fuente: elaboración propia

En el análisis del agua del río Cara Sucia, el punto 1 presenta elevada concentración de fosfatos, coliformes fecales y totales y Escherichia Coli. En el punto 2, la temperatura sufre un aumento significativo y las bacterias del grupo coliformes se encuentran elevadísimas.

Esta agua por indicar valores tan altos de contaminación microbiológica sólo puede utilizarse para usos mínimos o poco exigentes, es decir en actividades que no requieran agua de buena calidad, por ejemplo: riego de árboles forestales e industrias como ladrilleras; baño personal, lavado de ropa, platos y aperos de labranza.

Muestra de agua tomada en el río Cara Sucia, 2005

Agua superficial

Es aquella que se encuentran en el seno de los ríos, quebradas y nacimientos o manantiales; Se utiliza principalmente para el uso doméstico, industrial y agrícola. Recibe ese nombre porque se encuentra sobre la superficie del suelo y no hay necesidad de utilizar bombas u otros equipos para extraerla

Agua subterránea

Es aquella que encontramos bajo tierra. Generalmente los humanos la aprovechamos a través de los pozos

3.2 Resultados de monitoreos en pozos

Cuadro 3. Monitoreo en pozos del sistema de abastecimiento de agua (Acajutla y San Francisco Menéndez)

Parámetros	Unidades	Pozo 1	Pozo 2	Pozo 3	Pozo 4	Norma Salvadoreña
Temperatura del agua	°C	28	29	6.8	6.8	18 a 30
рН	Unidades	6.8	7.6	29	30	6.5 - 8.5
Conductividad	µmhos/cm	272	555	266	715	500 a 1,600
Turbidez	FTU o UNT	0	0	0	1	1 a 5
Cloruros	PPM CI	16	18	-	20	25 - 250
Hierro	mg/l	0.041	0.060	-	-	0.30
Manganeso	mg/l	0.0	0.00	-	-	0.10
Coliformes totales	UFC/100 ml	31	10	2,000	2,000	0
Coliformes fecales	UFC/100 ml	0	0	2,000	2,000	0
Escherichia Coli	UFC/100 ml	0	0	2,000	2,000	0

Pozo 1 La Balastrera y Pozo 2 La Arenera II, del cantón Metalío, Acajutla. Pozo 3 El Cortijo y Pozo 4 El Chino del municipio de San Francisco Menéndez

Fuente: elaboración propia

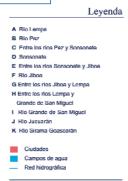
Acuífero

Cuerpo de agua subterránea existente en formaciones geológicas hidráulicamente conectadas entre sí, por los cuales circulan o se almacenan las aguas del subsuelo. Los acuíferos forman parte del dominio público hídrico. Para el caso de los pozos 1 y 2 del cantón Metalío sólamente los coliformes fecales se encuentran fuera de la Norma Salvadoreña Obligatoria de Agua Potable, por eso deben tomarse medidas para evitar que la contaminación llegue a los pozos que abastecen el sistema de agua; deberá mantenerse un estricto control mediante una desinfección con hipoclorito de calcio antes de que llegue a los hogares.

En el agua de los pozos de los caseríos El Cortijo y El Chino los parámetros microbiológicos están muy elevados, lo que indica presencia de heces fecales de humanos o animales de sangre caliente. Al ser propiedad privada, abastecen a la familia propietaria y eventualmente a otras cercanas al caserío. Las medidas de potabilización deben ser tomadas por cada familia antes de ser utilizada para beber.

En el pozo del caserío El Chino la concentración de cloruros en el agua es alta, sin embargo no puede considerarse contaminado por su cercanía al mar.

4. Resultados de monitoreos sobre la calidad del agua realizados por diferentes OG y ONG entre los años 1999 a 2005


Los parámetros que dichas organizaciones utilizaron para evaluar la calidad del agua son los que a su juicio les proporcionaban la información necesaria para sus objetivos, tomando como base la Norma Salvadoreña de Agua Potable avalada por la Organización Mundial de la Salud (OMS). (Ver Anexo 1)

En el Cuadro 4 se presenta de manera esquemática el recorrido de los monitoreos sobre la calidad del agua, realizados por las diferentes organizaciones a partir del año 1999 hasta el 2005. Se exponen por categoría: primero los monitoreos en agua superficial y luego en agua subterránea.

Cabe aclarar que el análisis de resultados a los monitoreos realizados por las instituciones que se citan a continuación, ha permitido rastrear la evolución de la calidad del agua en la región sur de Ahuachapán durante más de cinco años.

El análisis presentado en el Mapa de Recursos de Agua Subterránea y Superficial del MARN muestra que la contaminación biológica ocurre en toda la nación, especialmente en las áreas más pobladas. Excepto por algunas plantas de tratamiento primario, todos los afluentes industriales y domésticos son liberados dentro de los ríos y áreas costeras sin ningún tratamiento

Cuadro 4. Monitoreos en agua superficial y subterránea por diferentes OG y ONG entre 1999 a 2005

Institución	Año	Agua superficial (Ríos, nacimientos y quebradas)	Municipios
Unión Europea	1999	Nacimiento El Salto	San Pedro Puxtla
	0000	Ríos Hoja de Sal y Cuílapa	Jujutla
	2000	Ríos Güiscoyol, Metal y El Rosario	Guaymango
		Río Cuilapa	Jujutla
Visión Mundial		Río El Rosario	
Vision Mundial	2001	Nacimientos fuente Sánchez, Ceibita y García Sandoval	Guaymango
		Nacimientos Adolfo Alvarenga y Juan Orellana	
		Quebrada Güiscoyol	
		Nacimientos del caserío Cuilapa	
SalvaNATURA-	2003	Nacimientos de los cantones El Diamante y San Antonio Arriba	Jujutla
CARE	2004	Nacimiento comunidad Talpetate y quebradas	San Francisco Menéndez
		Zapúa y El Ciprés I	
		Nacimientos El Escondido y El Ciprés II	Jujutla
Proyecto		Río Faya	
Agua Socio-		Ríos Ahuachapío y Santa Rita	San Francisco Menéndez
SalvaNATURA	2004	Río San Pedro	San Pedro Puxtla
		Río Tapahuashuya	Guaymango
		Río Zapúa	Jujutla
		Ríos Guayapa y El Naranjo	Jujutla
SNET	2005	Río Cara Sucia	San Francisco Menéndez
		Río El Rosario	Guaymango
		Agua subterránea (pozos)	
CARE	1999-2000	Pozos perforados de ACEPROS y ACAGUAPA	San Francisco Menéndez y Jujutla
Proyecto Agua Socio- SalvaNATURA	2003-2004	Pozos profundos	San Francisco Menéndez y Jujutla

Quebrada

Río que por diversas razones ha muerto, por lo tanto ha perdido su caudal y actualmente lo mantiene muy pobre y sólo sirve para canalizar aguas lluvias

4.1 Resultados de monitoreos en agua superficial

4.1.1 Estudio realizado por la Unión Europea en nacimientos en 1999

Cuadro 5. Monitoreo en el nacimiento El Salto (San Pedro Puxtla)

Parámetros	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Norma Salvadoreña
pН	7.15	7.45	7.17	6.43	6.0-8.5
Olor	Inodora	Inodora	Inodora	Inodora	No detectable
Color Pt - Co	0.0	0.0	0	0.0	-15
Turbidez FTU	0.0	0.0	1	0.0	1-5
Sólidos suspendidos mg/l	0.0	0.0	2	0.0	-
Dureza mg/l CaCO₃	32.6	28.2	25.2	34.0	100 - 400
Calcio mg/l CaCO₃	14.6	12.2	12.2	15.0	- 75
Magnesio mg/l	18.0	16.0	13.0	19.0	- 50
Cloruros mg/l	7.0	7.0	7.0	7.0	25 - 250
Sulfatos mg/l	18.0	29.0	30.0	37.0	25 - 250
Cianuros mg/l	0.00	0.00	0.00	0.00	- 0.05
Fosfatos mg/l	0.00	0.00	0.00	0.20	-
Nitratos mg/l	23.3	23.30	22.9	33.9	- 45
Hierro mg/l	0.00	0.00	0.01	0.00	0.05 - 0.30
Manganeso mg/l	0.00	0.00	0.00	0.00	0.05 - 0.1
Coliformes totales UFC/100 ml	600	700	6,200	100.0	0
Coliformes fecales UFC/100 ml	0	0	200	0.00	0

Fuente: elaboración propia

En el nacimiento El Salto son los parámetros bacteriológicos los que sobrepasan el límite. El agua debe someterse a un proceso de desinfección antes de ser consumida por las personas.

El monitoreo en este nacimiento se llevó a cabo antes de implementar el sistema de agua de la Junta Administradora del Sistema de Agua Potable de los Cantones El Cortez, El Durazno, Guachipilín y Texispulco (CORDURGUATEX).

4.1.2 Estudio realizado por Visión Mundial en ríos en febrero de 2000

Cuadro 6. Monitoreo en sistema de agua de la comunidad Hoja de Sal (Jujutla)

		P	unto 1		
Parámetros	Unidades	Tanque ISTA	Tanque Nolasco	Punto 2	Punto 3
Fosfatos	mg/l	4.2	-	0.6	0.2
Nitratos	mg/l	17.6	-	5.28	14.52
Conteo total de bacterias	UFC/100 ml	11,200	45,500	31,400	7,300
Coliformes totales	UFC/100 ml	7,600	32,600	20,300	4,500
Escherichia Coli	UFC/100 ml	0	4,900	200	0

Punto 1 parte alta del río, Punto 2 parte media del río (quebrada) y Punto 3 parte baja del río (vertiente estanque)

Fuente: elaboración propia

Los tres puntos tienen niveles de fosfatos bastante elevados, lo cual indica que existe contaminación por detergentes o fertilizantes; además los resultados de los parámetros bactereológicos son muy altos. Su agua debe utilizarse sólo para

actividades mínimas o poco exigentes. Por la cantidad de bacterias coliformes presentes en su agua no puede consumirse ya que provocaría graves enfermedades.

Río

lago o al mar

Corriente de agua continua más o menos caudalosa que va a desembocar a otra, ya sea en un río más grande, un

Cuadro 7. Monitoreo en el río Cuilapa (Jujutla)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3
Fosfatos	mg/l	0.6	1.1	0.7
Nitratos	mg/l	3.08	3.52	3.52
Conteo total de bacterias	UFC/100 ml	40,100	46,500	20,300
Coliformes totales	UFC/100 ml	28,500	29,600	17,300
Escherichia Coli	UFC/100 ml	200	1,000	1,500

Punto 1 unión con río Hoja de Sal, Punto 2 parte media del río y Punto 3 parte baja del río (caserío Cuilapa)

Fuente: elaboración propia

Valen las mismas recomendaciones hechas para el sistema de agua de la comunidad Hoja de Sal.

Norma Salvadoreña

Cuando en el agua los límites establecidos por la Norma Salvadoreña Obligatoria de Agua Potable son sobrepasados, puede provocar enfermedades gastrointestinales o si la contaminación es química o radioactiva puede causar efectos fisiológicos perjudiciales que llevan a padecer enfermedades crónicas o a la muerte

Cuadro 8. Monitoreo en el río Güiscoyol (Guaymango)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3
Fosfatos	Mg/l	0.5	1.3	0.4
Nitratos	Mg/l	10.56	3.08	9.68
Conteo total de bacterias	UFC	2,800	29,400	24,100
Coliformes totales	UFC	400	11,200	14,700
Escherichia Coli	-	0	600	800

Punto 1 Cuenca alta (nacimiento), Punto 2 Cuenca media y Punto 3 Cuenca baja (vertiente)

Fuente: elaboración propia

Por encontrarse los parámetros bacteriológicos y los nitratos bastante elevados, valen las mismas recomendaciones hechas para el sistema de agua de la comunidad Hoja de Sal.

Cuadro 9. Monitoreo en el río Metal (Guaymango)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3
Fosfatos	mg/l	1.1	2.4	0.6
Nitratos	mg/l	2.2	6.6	3.96
Conteo total de bacterias	UFC	19,700	21,700	49,000
Coliformes totales	UFC	11,200	18,900	22,500
Escherichia Coli	-	400	900	1,000

Punto 1 Cuenca alta (cooperativa), Punto 2 Cuenca media (vertiente cárcamo) y

Punto 3 Cuenca baja

Fuente: elaboración propia

Cuadro 10. Monitoreo en el río El Rosario (Guaymango)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3
Fosfatos	mg/l	0.6	2.4	0.1
Nitratos	mg/l	21.56	0.88	13.2
Conteo total de bacterias	UFC	31,100	17,200	28,100
Coliformes totales	UFC	28,800	8,800	2,300
Escherichia Coli	-	300	1,100	26,800

Punto 1 Cuenca alta (vertiente las cuevitas), Punto 2 Cuenca media y Punto 3 Cuenca baja

Fuente: elaboración propia

Los resultados de monitoreos en los ríos anteriores (Cuadros 7, 8, 9 y 10) muestran una elevada contaminación bacteriológica; los fosfatos están altos en todos los casos, ya que no deben sobrepasar de 0.1 mg/l en agua que las personas pueden consumir.

Bacterias

Son organismos vivos, pequeñísimos, que sólo pueden ser vistos con ayuda del microscopio; por lo general se les llama microorganismos

Bacterias coliformes

Son microorganismos que habitan normalmente en el intestino de los seres humanos y de los animales de sangre caliente; no causan enfermedad, pero son de suma importancia en los análisis de aguas para investigar la contaminación porque son muy abundantes en la naturaleza y sirven de indicativo cuando el agua ha sido contaminada con heces fecales

Cuadro 11. Monitoreo en el río Cuilapa (Jujutla, abril de 2001)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3
pН	Unidades	6.16	7.73	7.84
Color real	Pt - Co	0	107	83
Turbidez	UNT	0	32	21
Sólidos suspendidos	mg/l	0	26	10
Sulfatos	mg/l	1	7	7
Fluoruros	mg/l	0.18	0.23	0.22
Nitratos	mg/l	9.24	8.36	7.92
Dureza	mg/l	10	10	10
Escherichia Coli	UFC/100 ml	200	1,100	600
Coliformes totales	UFC/100 ml	3,600	23,100	48,300
Conteo total de bacterias	UFC/100 ml	17,400	130,000	180,000

Punto 1 encuentro de ríos Hoja de Sal y Cuilapa, Punto 2 zona de La Cancha, Cuilapa medio y Punto 3 zona de escuela, Cuilapa bajo

Fuente: elaboración propia

Los parámetros físicos-químicos: turbidez y color real están bastante elevados en los puntos 2 y 3; y los niveles de contaminación bacteriana son muy altos en los tres puntos. El agua en su estado actual no debe ser consumida por las perosnas.

Cuadro 12. Monitoreo en el río El Rosario (Guaymango, mayo de 2001)

Parámetros	Unidades	Punto 1
рН	Unidades	8.08
Color real	Pt - Co	25.0
Turbidez	UNT	8.00
Sólidos suspendidos	mg/l	8.00
Sulfatos	mg/l	2.00
Fluoruros	mg/l	0.17
Nitratos	mg/l	4.40
Dureza	mg/l	70.0
Conteo total de bacterias	UFC/100 ml	145,000
Coliformest totales	UFC/100 ml	47,000
Escherichia Coli	UFC/100 ml	3,000

Fuente: elaboración propia

El río El Rosario tiene valores altos de turbidez y color real; y excesiva presencia de bacterias. Su agua no debe ser consumida por las personas.

Escherichia Coli

Es una especie de bacteria que habita normalmente en el intestino de los humanos y otros animales. Es uno de los organismos específicos del grupo coliformes

Tratamiento

Dar un tratamiento adecuado al agua significa eliminar completamente los contaminantes presentes. Para eliminar los coliformes pudieran realizarse tratamientos que van desde la filtración y posterior cloración; pero cada caso necesita una evaluación detallada para determinar el tipo de tratamiento para su potabilización

4.1.3 Estudio realizado por Visión Mundial en nacimientos, manantiales y quebradas en mayo de 2001

Cuadro 13. Monitoreos en nacimientos fuente Sánchez, Ceibita y Familia García Sandoval (Guaymango)

Parámetros	Unidades	Nacimiento 1	Nacimiento 2	Nacimiento 3	Norma Salvadoreña
рH	Unidades	6.43	6.32	6.48	6.0 - 8.5
Color real	Pt - Co	9	1	2	15
Turbidez	UNT	4	2	3	1 - 5
Sólidos suspendidos	mg/l	6	3	2	300 - 600
Dureza	mg/l	50	70	75	100 - 400
Sulfatos	mg/l	13	1	2	-
Fluoruros	-	0.13	0.15	0.04	- 0.05
Nitratos	mg/l	11	4.4	13.64	- 45
Cloro combinado	mg/l	0	0	0	60 - 125
Conteo total de bacterias	NMP/100 ml	183,000	58,000	65,000	< 1.1
Coliformes totales	NMP/100 ml	51,470	41,350	30,300	Negativo
Escherichia Coli	NMP/100 ml	0	0	2,750	Negativo

Nacimiento 1 fuente Sánchez, Nacimiento 2 fuente Ceibita y Nacimiento 3 fuente familia García Sandoval

Fuente: elaboración propia

Cuadro 14. Monitoreos en los nacimientos Adolfo Alvarenga y Juan Orellana (continuación)

Parámetros	Unidades	Nacimiento 1	Nacimiento 2	Norma Salvadoreña
рН	Unidades	6.07	5.59	-
Color real	Pt - Co	0	14	6.0 - 8.5
Turbidez	UNT	0	3	15
Sólidos suspendidos	Mg/I	1	2	1 - 5
Sulfatos	Mg/l	15	26	300 - 600
Fluoruros	Mg/I	0.30	0.32	100 - 400
Nitratos	Mg/l	17.6	16.72	-
Dureza	Mg/I	45	40	- 0.05
Conteo total de bacterias	UFC/100 ml	41,000	152,000	- 10
Coliformes totales	UFC/100 ml	35,000	18,000	60 -125
Escherichia Coli	UFC/100 ml	0	2000	< 1.1

Nacimiento 1 Adolfo Alvarenga y Nacimiento 2 Juan Orellana

Fuente: elaboración propia

Los altos contenidos de bacterias del grupo coliformes hacen que el ser humano no pueda consumir el agua de estos nacimientos (Cuadros 13 y 14).

Cuadro 15. Monitoreo en la quebrada Güiscoyol (Guaymango)

Parámetros	Unidades	Quebrada 1	Quebrada 2
рН	Unidades	6.69	7.56
Color real	Pt - Co	4	31
Turbidez	mg/l	4	5
Sólidos suspendidos	mg/l	6	3
Sulfatos	mg/l	38	1
Fluoruros	mg/l	0.33	0.32
Nitratos	mg/l	18.48	3.08
Dureza	mg/l	45	62.5
Conteo total de bacterias	UFC/100 ml	204,000	46,000
Coliformes totales	UFC/100 ml	71,000	3,000
Escherichia Coli	-	1,000	0

Medidas correctivas
Son aquellas actividades que se realizan
para corregir un
problema determinado,
por ejemplo evitar
que en un río se
descarguen aguas
negras

Quebrada 1 El Interno Güiscoyol y Quebrada 2 Cachagua, caserío Cachagua

En la quebrada Güiscoyol los parámetros bacteriológicos están muy elevados, mientras que la quebrada Cachagua tiene mucha concentración de color real y bacterias. En su estado actual el agua no se puede beber. Es necesario eliminar por completo las bacterias del grupo coliformes y bajar la turbidez.

Sin embargo potabilizar el agua requiere de tratamientos sofisticados, de asistencia técnica y equipo especializado lo cual resultaría muy costoso para las comunidades, principalmente las del área rural.

Pozo artesanal

Es un pozo que se excava por medio de picos, palas u otras herramientas de mano. Aunque en algunos casos también se utilizan palas mecánicas u otra maquinaria excavadora o dragadora

SNET, mayo de 2005

4.1.4 Estudio realizado por SalvaNATURA-CARE en nacimiento o manantial en diciembre de 2003 y 2004

Cuadro 16. Monitoreos en los nacimientos del caserío Cuilapa (Jujutla, 2003)

Parámetros	Unidades	Nacimiento 1	Nacimiento 2	Norma Salvadoreña
рН	Unidades	6.85	6.57	5.5 - 8.5
Conductividad	Micromhos/cm	14610	150.50	500 - 1600
Color aparente	Pt - Co	12.50	2.50	-
Color verdadero	Pt - Co	7.50	2.50	- 15
Turbiedad	UNT	3.10	0.73	1 - 5
Alcalinidad	mg/l	75.24	83.16	30 - 350
Bióxido de carbono	mg/l	20.0	43.0	-
Dureza	mg/l	70.0	78.0	100 - 400
Calcio	mg/l	16.30	19.24	- 75
Magnesio	mg/l	7.29	7.29	- 50
Cloruros	mg/l	2.57	4.63	25 - 250
Hierro total	mg/l	0.15	0.10	0.05 - 0.30
Hierro soluble	mg/l	0.10	0.10	-
Manganeso total	mg/l	Trazas	Trazas	0.05 - 0.10
Manganeso soluble	mg/l	0.00	0.0	-
Sólidos totales	mg/l	240.0	264.0	-
Sólidos totales disueltos	mg/l	232.0	260.0	300 - 600
Sulfatos	mg/l	7.48	8.06	25 - 250
Nitratos	mg/l	0.12	0.35	- 45
Sílice	mg/l	90.0	90.0	60 - 125
Flúor	mg/l	No detectable	0.50	-
Bicarbonatos	mg/l	75.24	83.16	-
Hidróxidos	mg/l	0.0	0.0	-
Coliformes totales	NMP/100 ml	Mayor 1,600	Mayor 1,600	-
Coliformes fecales	NMP/100 ml	Mayor 1,600	Mayor 1,600	-
Escherichia Coli	-	Positivo	Positivo	-

Nacimiento 1 Juan Calderón, caserú Cuilapa y Nacimiento 2 Julio Arriaza, caserío Cuilapa

Fuente: elaboración propia

En los nacimientos anteriores el mayor problema es la presencia de bacterias. Con relación a los parámetros físicos-químicos todos cumplen con la Norma Salvadoreña; se recomienda tomar las medidas necesarias para evitar que se contaminen, ya sea con obras de protección de los nacimientos, educación, campañas de limpieza de fuentes de agua, letrinización, etc. Su agua sí puede ser consumida por el ser humano.

Cuadro 17. Monitoreos en nacimientos de los cantones El Diamante y San Antonio Arriba (Jujutla, 2003)

Parámetros	Unidades	Nacimiento 1	Nacimiento 2	Norma Salvadoreña
рН	Unidades	6.56	7.40	5.5 - 8.5
Conductividad	Micromhos/cm	168.30	162.80	500 - 1600
Olor	-	Normal	Normal	No rechazable
Color verdadero	Pt - Co	2.50	30.00	- 15
Turbiedad	UNT	0.51	16.00	1 - 5
Alcalinidad	mg/l	94.05	89.10	30 - 350
Bióxido de carbono	mg/l	50.0	6.80	-
Dureza	mg/l	79.00	94.0	100 - 400
Calcio	mg/l	20.44	17.63	- 75
Magnesio	mg/l	6.80	12.15	- 50
Cloruros	mg/l	14.91	5.14	25 - 250
Hierro total	mg/l	0.10	0.90	0.05 - 0.30
Hierro Soluble	mg/l	0.10	0.40	-
Manganeso total	mg/l	Trazas	0.075	0.05 - 0.10
Manganeso soluble	mg/l	0.0	Trazas	-
Sólidos totales	mg/l	260.0	276.0	-
Sólidos totales disueltos	mg/l	144.0	236.0	300 - 600
Sulfatos	mg/l	6.81	10.58	25 - 250
Nitratos	mg/l	0.08	0.17	- 45
Sílice	mg/l	90.0	90	60 - 125
Flúor	mg/l	0.50	0.30	-
Dureza carbonatica	mg/l	79.0	89.10	-
Dureza no carbonatica	mg/l	0.0	4.90	-
Carbonatos	mg/l	0.0	0.0	-
Bicarbonatos	mg/l	94.05	89.10	-
Alcalinidad al bicarbonato de sodio o potasio	mg/l	15.05	0	-
Coliformes totales	NMP/100 ml	900	Mayor 1600	-
Coliformes fecales	NMP/100 ml	500	Mayor 1600	-
Escherichia Coli	-	Negativo	Positivo	-

Nacimiento 1 cantón El Diamante y Nacimiento 2 cantón San Antonio Arriba (Mártir Orellana)

En el nacimiento El Diamante todos los parámetros físicos-químicos se encuentran dentro de los límites establecidos, no así los parámetros bacteriológicos. Por su parte, el nacimiento Mártir Orellana además de presentar fuera de norma los parámetros bacteriológicos presenta altas concentraciones de hierro, por eso

su agua necesita tratamiento especial ya que causa problemas en las tuberías y en los accesorios de loza y mampostería en las viviendas; además imparte color y sabor desagradable cuando está arriba de 0.30 mg/l.

Cuadro 18. Monitoreo en el nacimiento de la comunidad Talpetate (San Francisco Menéndez, julio de 2004)

Parámetros	Unidades	Nacimiento	Norma Salvadoreña
рН	Unidades	6.5	6.0 - 8.5
Color aparente	Pt - Co	1	NR - 50
Color verdadero	Pt - Co	2	15
Temperatura del agua	°C	27	18 - 30 NR
Turbiedad	UNT	2	1 - 5
Sólidos totales disueltos	mg/l	293.0	300 - 600
Alcalinidad total	mg/l	35.0	30 - 350
Dureza total	mg/l	130.0	100 - 400
Bióxido de carbono	mg/l	28.39	-
Conductividad	Micromhos/cm	491	500 - 1600
Dureza carbonatada	mg/l	35.0	-
Calcio	mg/l	7.84	- 75
Magnesio	mg/l	17.98	- 50
Hierro total	mg/l	0.27	0.05 - 0.30
Hierro soluble	mg/l	0.08	-
Manganeso total	mg/l	0.00	0.05 - 0.1
Fosfato (PO ₄ ⁻³)	mg/l	0.57	-
Cianuro (CN)	mg/l	No Dato	- 0.05
Cloruros	mg/l	20.00	25 - 250
Sulfatos	mg/l	28.0	25 - 250
Nitratos	mg/l	1.00	- 45
Sílice	mg/l	124.40	60 - 125
Flúor	mg/l	0.00	- 1.5
Coliformes totales	NMP/100 ml	1,600	< 1.1
Coliformes fecales	NMP/100 ml	900	Negativo
Escherichia Coli	-	Positivo	Negativo

Pozo perforado

Es un pozo excavado total o parcialmente por medio de una máquina perforadora

SNET, mayo de 2005

Procesos de desinfección

Consisten en la destrucción selectiva de organismos causantes de enfermedades. Para el caso del agua, se refiere al tratamiento con productos químicos como el cloro y por medios físicos como la ebullición y exposición directa a los rayos ultravioleta; y medios mecánicos como la sedimentación y la filtración

Cuadro 19. Monitoreos en los nacimientos Zapúa y El Ciprés I (Jujutla, julio de 2004)

Parámetros	Unidades	Nacimiento 1	Nacimiento 2	Norma Salvadoreña
рН	Unidades	6.5	6.8	6.0 - 8.5
Color aparente	Pt - Co	1	1	NR - 50
Color verdadero	Pt - Co	2	2	15
Temperatura del agua	°C	23	20	18 - 30 NR
Turbiedad	UNT	3	2	1 - 5
Sólidos totales disueltos	mg/l	2.99.0	294	300 - 600
Alcalinidad total	mg/l	40.0	24.0	30 - 350
Dureza total	mg/l	104.0	86.0	100 - 400
Bióxido de carbono	mg/l	32.44	9.75	-
Conductividad	Micromhos/cm	505.0	486	500 - 1600
Dureza carbonatada	mg/l	40.0	24.0	-
Dureza no carbonatica	mg/l	64.0	62.0	-
Calcio	mg/l	20.80	15.20	- 75
Magnesio	mg/l	12.64	11.66	- 50
Hierro total	mg/l	0.06	0.05	0.05 - 0.30
Hierro soluble	mg/l	0.02	0.01	-
Manganeso total	mg/l	0.01	0.00	0.05 - 0.1
Fosfato (PO ₄ -3)	mg/l	0.20	0.36	-
Cloruros	mg/l	20.0	17.0	25 - 250
Sulfatos	mg/l	12.0	2.00	25 - 250
Nitratos	mg/l	2.10	3.20	- 45
Sílice	mg/l	68.20	68.6	60 - 125
Flúor	mg/l	0.00	0.00	- 1.5
Coliformes totales	NMP/100 ml	1,600	166	< 1.1
Coliformes fecales	NMP/100 ml	4	2	Negativo
Escherichia Coli	NMP/100 ml	Negativo	Negativo	Negativo

Nacimiento 1 quebrada Zapúa y Nacimiento 2 quebrada El Ciprés I

Cuadro 20. Monitoreos en los nacimientos El Escondido y El Ciprés II (Jujutla, julio de 2004)

Parámetros	Unidades	Nacimiento 1	Nacimiento 2	Norma Salvadoreña
рН	Unidades	6.566.5	6.6	6.0 - 8.5
Color aparente	Pt - Co	1	1	NR - 50
Color verdadero	Pt - Co	2	2	15
Temperatura del agua	°C	28	21	18 - 30 NR
Turbiedad	UNT	3	2	1 - 5
Sólidos totales disueltos	mg/l	327.0	310	300 - 600
Alcalinidad total	mg/l	48.0	25.0	30 - 350
Dureza total	mg/l	110.0	80.0	100 - 400
Conductividad	Micromhos/cm	483	489	500 - 1600
Dureza carbonatada	mg/l	48.0	25.00	-
Dureza no carbonatica	mg/l	62.0	55.00	-
Calcio	mg/l	17.60	12.0	- 75
Magnesio	mg/l	16.04	12.15	- 50
Hierro total	mg/l	0.28	0.09	0.05 - 0.30
Hierro soluble	mg/l	0.08	0.04	-
Manganeso total	mg/l	0.00	0.00	0.05 - 0.1
Fosfato (PO ₄ -3)	mg/l	0.73	0.29	-
Cianuro (CN)	-	No detectable	No detectable	- 0.05
Ácido sulfhídrico	mg/l	No detectable	No detectable	ND - > 0.05
Bicarbonatos	Mg/l	48.0	25.0	-
Cloruros	mg/l	19.40	16.0	25 - 250
Sulfatos	mg/l	21.0	1.00	25 - 250
Nitratos	mg/l	0.90	3.70	- 45
Sílice	mg/l	117.60	78.40	60 - 125
Flúor	mg/l	0.00	0.00	- 1.5
Coliformes totales	NMP/100 ml	300	Mayor de 1600	< 1.1
Coliformes fecales	NMP/100 ml	240	Mayor de 1600	Negativo
Escherichia Coli	NMP/100 ml	Positivo	Negativo	Negativo

Nacimiento 1 caserío El Escondido, cantón Faya y Nacimiento 2 El Cipres II, comunidad Mangos II

Fuente: elaboración propia

Los análisis en ambos nacimientos indican alta concentración de fosfatos a causa de aguas servidas y fertilizantes agrícolas. Si el

agua debe ser consumida por las personas es necesario someterla previamente a tratamiento de desinfección.

4.1.5 Estudio realizado por Proyecto Agua Socio SalvaNATURA en ríos en el 2004

Cuadro 21. Monitoreo en el río Faya (Jujutla)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3
Temperatura del Agua	°C	25.20	25.10	29.30
рH	-	7.24	7.36	7.52
Conductividad	ms/cm	0.10	0.10	0.20
OD	mg/l	8.16	10.51	10.29
DBO	mg/l	8.02	6.16	5.06
DQO	mg/l	57.09	55.12	39.37
Nitrógeno	mg/l	6.28	6.28	6.28
Fosfatos	mg/l	0.24	0.15	0.26
Coliformes fecales	NMP/100 ml	65,000	23.50	650
Coliformes totales	NMP/100 ml	145,000	4,000	29,000

Fuente: elaboración propia

Los datos del monitoreo en el río Faya muestran elevados valores de temperatura, DBO, DQO, nitrógeno y coliformes fecales y totales. Su agua sólo puede emplearse para usos mínimos o poco exigentes.

Cuadro 22. Monitoreo en el río Ahuachapío (San Francisco Menéndez)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3	Punto 4
Temperatura del agua	°C	222.20	24.00	26.10	27.30
рН	-	7.66	7.61	7.55	7.51
Conductividad	mS/cm	0.10	0.10	0.10	0.10
OD	mg/l	12.25	11.56	11.24	10.15
DBO	mg/l	3.58	4.78	4.33	4.88
DQO	mg/l	43.31	39.37	35.44	35.44
Nitrógeno	mg/l	6.28	6.28	6.28	6.28
Fosfatos	mg/l	0.08	0.11	0.13	0.28
Coliformes fecales	NMP/100 ml	22.5	270	5,000	4,000
Coliformes totales	NMP/100 ml	1,900	1,250	26,000	23,000

Fuente: elaboración propia

En este caso todos los puntos indican concentraciones elevadas en los parámetros que limitan el uso del agua a mínimos o poco exigentes: temperatura, DQO, nitrógeno y coliformes fecales y totales.

Obras de protección

Son generalmente obras físicas construidas para evitar la contaminación del agua, por ejemplo: instalación de cercas, construcción de tapaderas para evitar que se introduzca material que pueda contaminar

Temperatura

La temperatura de agua superficial está relacionada con las variaciones de la temperatura del área y de la irradiación solar. Se expresa en grados centígrados (°C) y se mide inmediatamente en el campo con un termómetro

En las comunidades los pozos suelen taparse con plástico o lámina para evitar que se contamine, junio, 2005

Cuadro 23. Monitoreo en el río Santa Rita (San Francisco Menéndez)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3	Punto 4	Punto 5
Temperatura del agua	°C	22.80	24.80	27.10	27.20	28.70
рН	-	7.85	7.54	7.72	7.58	7.43
Conductividad	mS/cm	0.10	0.10	0.10	0.10	0.10
OD	mg/l	9.93	9.03	9.54	9.20	9.09
DBO	mg/l	3.81	5.36	5.29	5.13	5.43
DQO	mg/l	44.57	62.02	46.87	47.24	78.74
Nitrógeno	mg/l	3.14	3.14	1.57	3.14	3.92
Fosfatos	mg/l	0.24	0.12	0.26	0.17	0.20
Coliformes fecales	NMP/100 ml	90	55	300	3,000	2,300
Coliformes totales	NMP/100 ml	2,200	1,750	3,600	7,000	7,500

La temperatura, la DBO, la DQO, los nitratos, fosfatos y los coliformes limitan el uso del agua del río Santa Rita.

Cuadro 24. Monitoreo en el río San Pedro (San Pedro Puxtla)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3	Punto 4	Punto 5	Punto 6
Temperatura del agua	°C	22.30	26.10	27.20	27.60	26.40	26.40
рН	-	7.56	7.89	8.10	8.00	8.08	7.65
Conductividad	ms/cm	0.10	0.20	0.20	0.20	0.20	0.10
OD	mg/l	11.18	8.02	8.28	8.22	8.82	8.43
DBO	mg/l	6.74	12.67	10.30	10.24	6.35	8.50
DQO	mg/l	40.07	87.78	72.52	72.52	45.80	55.34
Nitrógeno	mg/l	2.80	2.80	8.40	2.80	5.60	5.60
Fosfatos	mg/l	0.30	0.41	0.32	0.40	0.33	0.78
Coliformes fecales	NMP/100 ml	26,500	60,000	13,500	13,500	15,000	4,000
Coliformes totales	NMP/100 ml	195,000	165,000	65,000	55,000	60,000	12,000

Debido a los altos valores de temperatura, DBO, DQO, nitrógeno, fosfatos y coliformes fecales en los diferentes puntos, los usos del agua del río San Pedro Puxtla se ven limitados.

Cuadro 25. Monitoreo en el río Tapahuashuya (Guaymango)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3	Punto 4
Temperatura del agua	°C	23.90	25.00	26.00	26.20
рН	-	7.27	7.73	7.58	7.57
Conductividad	ms/cm	0.10	0.10	0.10	0.10
Turbidez	UNT	5.30	1.45	2.25	0.85
OD	mg/l	8.40	8.11	7.27	7.04
DBO	mg/l	3.29	4.06	5.12	6.45
DQO	mg/l	32.44	62.98	53.19	42.55
Nitrógeno	mg/l	3.14	0.31	3.14	3.92
Fosfatos	mg/l	0.54	0.57	0.87	0.74
Coliformes fecales	NMP/100 ml	1,400	1,100	1,200	3,250
Coliformes totales	NMP/100 ml	50,000	7,500	3,250	24,000

Fuente: elaboración propia

Utilizando los parámetros físicos-químicos y bacteriológicos se determinó que la calidad del agua del río Tapahuashuya está muy deteriorada y se reduce a usos mínimos o poco exigentes.

Cuadro 26. Monitoreo en el río Zapúa (Jujutla)

Parámetros	Unidades	Cauce de río Zapúa
рН	Unidades	7.6
Color aparente	Pt -Co	1
Color verdadero	Pt -Co	2
Temperatura del agua	°C	21
Turbiedad	UNT	3
Sólidos totales disueltos	mg/l	352
Alcalinidad total	mg/l	31.0
Dureza total	mg/l	90.0
Bióxido de carbono	mg/l	19.99
Conductividad	Micromhos/cm	491
Dureza carbonatada	mg/l	31.0
Calcio	mg/l	13.60
Magnesio	mg/l	16.61
Hierro total	mg/l	0.08
Hierro disuelto	mg/l	0.03
Manganeso total	mg/l	0.00
Manganeso disuelto	mg/l	0.00
Fosfato (PO ₄ -3)	mg/l	0.17
Ácido sulfhídrico	-	No detectable
Bicarbonatos	-	31.0
Cloruros	mg/l	18.0
Sulfatos	mg/l	1.00
Nitratos	mg/l	1.20
Sílice	mg/l	64.20
Flúor	mg/l	0.00
Coliformes totales	NMP/100 ml	1,600
Coliformes fecales	NMP/100 ml	166
Escherichia Coli	-	Negativo

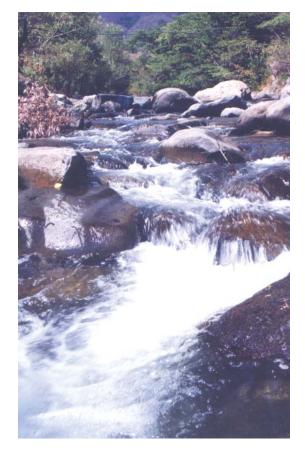
La contaminación del agua del río Zapúa es de origen bacteriana y los fosfatos están ligeramente elevados. Se recomienda un tratamiento adecuado antes ser utilizada para consumo humano.

4.1.6 Estudio realizado por el Sistema Nacional de Estudios Territoriales (SNET) en ríos en 2005

Cuadro 27. Monitoreo en el río Guayapa (Jujutla)

Parámetros	Unidades	Punto 1	Punto 2
Temperatura del agua	°C	27.3	28.9
рН	Unidades	7.84	7.46
Oxígeno disuelto	ppm O ₂	7.55	7
Turbidez	FAU	1	8
Nitratos	ppmO₃	1.1	3.7
Fosfatos	ppm PO ₄	0.21	0.48
Sólidos totales disueltos 180°C	ppm	146	142
DBO ₅	ppm O ₂	2	2
Coliformes fecales	NMP/100 ml	5,000	30,000

Fuente: elaboración propia


El agua del río Guayapa posee algunos parámetros químicos y bacteriológicos elevados; no puede ser bebida por las personas ya que existe presencia de heces fecales.

Cuadro 28. Monitoreo en el río El Naranjo (Jujutla)

Parámetros	Unidades	Punto 1	Punto 2
Temperatura del agua	°C	25.4	25.6
рН	Unidades	7.5	7.53
Oxígeno disuelto	ppm O ₂	7.7	7.8
Turbidez	FAU	3	2
Nitratos	ppm O₃	1.1	2.6
Fosfatos	ppm PO₄	0.12	0.22
Sólidos totales disueltos 180°C	ppm	54	120
DBO ₅	ppm O ₂	5	1
Coliformes fecales	NMP/100 ml	2400	1400

Fuente: elaboración propia

El río El Naranjo posee altos niveles de contaminación; su agua no puede ser consumida por los seres humanos.

El agua puede consumirse cuando está exenta de organismos capaces de producir enfermedades o de sustancias que pueden producir efectos fisiológicos perjudiciales

Cuadro 29. Monitoreo en el río Cara Sucia (San Francisco Menéndez)

Parámetros	Unidades	Punto 1	Punto 2	Punto 3
Temperatura del agua	°C	27	29.8	27.8
рН	Unidades	7.62	7.9	7.43
Oxígeno disuelto	ppm O ₂	7.7	8.3	7
Turbidez	FAU	11	3	8
Nitratos	ppm O₃	2.3	1.7	1.4
Fosfatos	ppm PO ₄	0.36	0.02	0.002
Sólidos totales disueltos 180°C	ppm	178	146	164
DBO ₅	ppm O ₂	3	2	4
Coliformes fecales	NMP/100 ml	28	1	90,000

En el punto 3 los valores de coliformes fecales están muy altos; su agua no está en condiciones de ser consumida por las personas.

Cuadro 30. Monitoreo en el río El Rosario (Guaymango)

Parámetros	Unidades	Punto 1	Punto 2
Temperatura del agua	°C	27.7	29.1
PH	Unidades	7.99	7.74
Oxígeno disuelto	ppm O ₂	7.6	8.3
Turbidez	FAU	12	3
Nitratos	ppm O₃	2.8	2.3
Fosfatos	ppm PO ₄	0.33	0.22
Sólidos totales disueltos 180°C	ppm	178	168
DBO ₅	ppm O ₂	2	2
Coliformes fecales	NMP/100 ml	800	30,000

Fuente: elaboración propia

El agua del río El Rosario no es apropiada para el consumo humano, pues existe alta contaminación por fosfatos y coliformes fecales. Su agua puede potabilizarse a través de tratamientos físicos como la filtración y la ebullición, y químicos como el cloro.

4.2 Resultados de Monitoreos realizado en agua subterránea

4.1.7 Estudio realizado por CARE en pozos en los años 1999-2000

Cuadro 31. Monitoreos en pozos del caserío Puente Arce, cantón Jocotillo y del cantón Cara Sucia (San Francisco Menéndez)

Parámetros	Unidades	Pozo ACEPROS*	Pozo ACAGUAPA*	Norma Salvadoreña
рН	Unidades	7.00	6.76	6.0 - 8.5
Conductividad	Micromhos/cm.	220.0	352.00	500 - 1600
Turbidez	UNT	54.0	6.8	1 - 5
Olor	-	Normal	Ligero terroso	NR - 3
Color aparente	Pt - Co	112.50	27.50	NR - 50
Color verdadero	Pt - Co	12.5	12.5	15
Alcalinidad total	mg/l	130.00	251.25	30 - 350
Bióxido de carbono	mg/l	25.0	85.00	-
Dureza	mg/l	117.17	158.40	100 - 400
Calcio	mg/l	14.67	36.87	75 - 200
Magnesio	mg/l	18.47	16.28	50 - 150
Cloruros	mg/l	6.00	29.50	200 - 600
Hierro total	mg/l	5.50	1.25	- 0.30
Hierro soluble	mg/l	0.30	0.30	-
Manganeso total	mg/l	0.55	0.25	- 0.10
Sólidos totales	mg/l	300.0	360.00	-
Sólidos totales disueltos	mg/l	208.00	176.00	300 - 600
Sulfatos	mg/l	0.0	16.36	200 - 400
Nitratos	mg/l	0.08	0.35	- 45
Sílice	mg/l	90.00	90.00	- 100
Flúor	mg/l	0.90	0.70	0.8 - 1.5
Dureza carbonatica	mg/l	117.17	158.40	-
Bicarbonatos	mg/l	130.0	251.25	-
Coliformes totales	NMP/100 ml	9	Mayor de 23	< 1.1 NMP/100 ml
Coliformes fecales	NMP/100 ml	Negativo	Mayor de 23	Negativo
Escherichia Coli	NMP/100 ml	Negativo	Positivo	Negativo

^{*} Pozo perforado de ACEPROS, octubre 1999

^{*} Pozo perforado de ACAGUAPA, mayo de 2000

En el agua de estos pozos el olor, el hierro y el manganeso están fuera de los límites establecidos; el resto de los parámetros sí están dentro de la norma. Bacteriológicamente necesita tratamientos de desinfección antes de ser consumida por las personas.

La presencia de hierro y manganeso no tiene importancia desde el punto de vista de la salud, pero sí desde el punto de vista técnico, ya que causan problemas de color y sabor al agua que, como ya se mencionó, debe ser cristalina y sin sabor.

4.1.8 Estudio realizado por Proyecto Agua-Socio Salvanatura, en el municipio de Jujutla en los años 2003 y 2004

Cuadro 32. Monitoreo en pozo de la comunidad El Quebracho, cantón San Antonio (Jujutla)

Parámetros	Unidades	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Norma Salvadoreña
рН	Unidades	-	6.5	6.6	6.5	6.0 - 8.5
Alcalinidad total (CaCO ₃)	mg/l	-	71.5	-	-	30 - 250
Dureza total (CaCO ₃)	mg/l	-	115.0	-	-	100 - 400
Calcio	mg/l	-	22.00	-	-	- 75
Magnesio	mg/l	-	15.45	-	-	- 50
Hierro total	mg/l	0.234	0.35	0.8	0.29	0.05 - 0.03
Hierro disuelto	mg/l	-	Trazas	Trazas	-	-
Manganeso total	mg/l	0.920	0.95	0.4	0.07	0.02 - 0.01
Manganeso disuelto	mg/l	-	0.56	Trazas	Trazas	-
Fosfato (PO ₄ -3)	mg/l	-	0.52	-	-	-
Cloruros	mg/l	-	51.75	-	-	25 - 250
Sulfatos	mg/l	-	1.25	-	-	25 - 250
Coliformes totales	NMP/100 ml	220	-	-	-	< 1.1

Muestra 1 año 1999, Muestra 2 diciembre de 2003, Muestra 3 enero de 2004 y Muestra 4 febrero de 2004

Fuente: elaboración propia

Cuadro 33. Monitoreo en pozo de la comunidad El Quebracho, cantón San Antonio (continuación)

Parámetros	Unidades	Muestra 5	Muestra 6	Muestra 7	Norma Salvadoreña
PH	Unidades	6.6	6.7	-	6.0 - 8.5
Alcalinidad total (CaCO ₃	mg/l	-	70.00	-	30 - 250
Dureza total (CaCO ₃)	mg/l	-	115.0	-	100 - 400
Calcio	mg/l	-	20.80	-	- 75
Magnesio	mg/l	-	15.31	-	- 50
Hierro total	mg/l	0.02	0.05	1.25	0.05 - 0.03
Hierro soluble	mg/l	Trazas	Trazas	0.10	-
Manganeso total	mg/l	0.01	Trazas	Trazas	0.02 - 0.01
Manganeso disuelto	mg/l	Trazas	Trazas	0.0 mg/l	-
Fosfato (PO ₄ -3)	mg/l	-	0.49	-	-
Cloruros	mg/l	-	51.00	-	25 - 250
Sulfatos	mg/l	-	1.00	-	25 - 250
Plomo	mg/l	-	No detectable	No detectable	- 0.01
Cobre	mg/l	-	Trazas	-	-
Aluminio	mg/l	-	-	0.04	- 0.05
Zinc	mg/l	-	-	0.06	- 5.00

Muestra 5 marzo de 2004, Muestra 6 abril de 2004 y Muestra 7 julio de 2004

Los análisis del agua en estos pozos se llevaron a cabo en tres laboratorios diferentes. Los resultados de los puntos del 2 al 6 no fueron muy confiables porque presentaron variaciones en el análisis químico, cuando por regla general los compuestos químicos no varían significativamente en el tiempo, a menos que ocurra un evento especial o por contaminación industrial.

Se debe prestar atención al hecho de que los niveles de hierro y manganeso deben mantenerse relativamente constantes y sin mayores variaciones entre la época lluviosa y la seca. Probablemente el que estos elementos se encontraran en niveles bajos se debió a problemas en la toma de la muestra, en su conservación o en la realización de los análisis.

Su agua no debe ser consumida por las personas.La comunidad El Quebracho, luego de extraer agua del pozo, le aplica tratamiento para eliminar el exceso de hierro.

Cuadro 34. Monitoreos en pozos artesanales del municipio San Francisco Menéndez, 2004

Parámetros	Unidades	Pozo 1	Pozo 2	Pozo 3	Norma Salvadoreña
рН	Unidades	6.5	8	6.95	6.0 - 8.5
Color aparente	Pt - Co	1	1	1	NR
Color verdadero	Pt - Co	2	3	2	15
Temperatura del agua	°C	25	29.5	29	18 - 30 NR
Turbiedad	UNT	3	4	4	1 - 5
Sólidos totales disueltos	mg/l	306.0	593	497	300 - 600
Alcalinidad total	mg/l	60.0	130.0	263	30 - 350
Dureza total	mg/l	96.0	474.0	802.00	100 - 400
Bióxido de carbono	mg/l	48.66	3.35	75.90	-
Conductividad	Micromhos/cm.	507	731	786	500 - 1600
Dureza carbonatada	mg/l	60.0	130.0	263.0	-
Calcio	mg/l	12.80	26.40	100.80	- 75
Magnesio	mg/l	15.55	99.14	163.65	- 50
Hierro total	mg/l	0.11	0.01	0.04	0.05 - 0.30
Hierro soluble	mg/l	0.01	0.0	0.01	-
Manganeso total	mg/l	0.02	0.0	0.0	0.05 - 0.1
Fosfato (PO ₄ -3)	mg/l	0.99	0.54	1.79	-
Cianuro (CN)	mg/l	No detectable	No detectable	No detectable	- 0.05
Ácido sulfhídrico	-	No detectable	No detectable	No detectable	ND - > 0.05
Bicarbonatos	-	60.0	130.0	263.0	-
Cloruros	mg/l	19.50	253.00	715.0	25 - 250
Sulfatos	mg/l	98.0	46.0	192.0	25 - 250
Nitratos	mg/l	1.90	0.40	0.80	- 45
Sílice	mg/l	103.30	36.10	80.30	60 - 125
Flúor	mg/l	0.00	0.00	0.0	- 1.5
Coliformes totales	NMP/100 ml	900	>1600	>1600	< 1.1
Coliformes fecales	NMP/100 ml	500	33	55	Negativo
Escherichia Coli	-	Positivo	Positivo	Positivo	Negativo

Pozo 1 caserio El Güisnay, julio de 2004, Pozo 2 cantón Garita Palmera, agosto de 2004 y Pozo 3 colonia ISTA, agosto de 2004

En el pozo del caserío El Güisnay, de los parámetros físicosquímicos sólamente la conductividad se encuentra fuera de los límites establecidos. Los parámetros bacteriológicos, coliformes totales, fecales y Escherichia Coli, también están elevados. Si es necesario utilizar el agua para beber debe ser sometida a procesos de desinfección y realizar medidas correctivas.

La contaminación bacteriológica es muy alta en el pozo Garita Palmera, por lo tanto, valen las recomendaciones hechas para el pozo de El Güisnay. Los parámetros: cloruros, magnesio, dureza, fosfatos y conductividad están fuera de la norma; es precisa la ayuda técnica para darle el tratamiento adecuado y convertirla en adecuada para consumo humano.

Los parámetros físicos-químicos: dureza, calcio, magnesio y cloruros, fosfatos y conductividad en el agua del pozo de la Colonia ISTA sobrepasan los límites normales, al igual que los parámetros bacteriológicos: coliformes totales y fecales y Escherichia Coli. Deben acatarse las recomendaciones para los dos pozos anteriores: que su agua sea sometida a un proceso desinfección y realizar medidas correctivas.

Cuadro 35. Monitoreo en pozo del caserío El Cocalito, cantón San Antonio (Jujutla)

Parámetros	Unidades	Resultados	Norma Salvadoreña
рН	Unidades	6.5	6.0 – 8. 50
Color aparente	Pt - Co	1	No rechazable
Color verdadero	Pt - Co	2	- 15
Temperatura del agua	°C	29	18 - 30
Turbidez	UNT	2	1 - 5
Sólidos totales disueltos	mg/l	294.0	300 - 600
Alcalinidad total (CaCO ₃)	mg/l	28.0	30 - 350
Dureza total (CaCO ₃)	mg/l	104.0	100 - 400
Bióxido de carbono	mg/l	22.71	-
Conductividad	mg/l	394	500 - 600
Dureza carbonática	mg/l	28.0	-
Dureza no carbonática	mg/l	76.0	-
Calcio	mg/l	16.0	- 75
Magnesio	mg/l	15.55	- 50
Hierro total	mg/l	0.33	0.05 - 0.30
Hierro soluble	mg/l	0.25	-
Manganeso total	mg/l	0.00	0.02 - 0.1
Manganeso soluble	mg/l	0.00	-
Fosfato (PO ₄ ⁻³)	mg/l	1.18	-
Cianuro	mg/l	No detectable	- 0.05
Ácido sulfhídrico	mg/l	No detectable	- 0.05
Bicarbonatos	mg/l	28.0	-
Cloruros	mg/l	21.0	25 - 250
Sulfatos	mg/l	18.0	25 - 250
Nitratos	mg/l	2.50	- 45
Sílice	mg/l	92.10	60 - 125
Flúor	mg/l	0.00	- 1.5
Coliformes totales	NMP/100 ml	> 1, 600	< 1.1
Coliformes fecales	NMP/100 ml	9000	Negativo
Escherichia Coli	-	Positivo	Negativo

Eliminar el exceso de hierro requiere de asistencia técnica especializada, pues se necesita tecnología y tratamientos complicados que van desde la simple oxidación con elevadas concentraciones de cloro, llegar a la floculación, sedimentación y cloración nuevamente

En este pozo los parámetros físicos-químicos: hierro y fosfatos; y los parámetros bacteriológicos coliformes totales y fecales y Escherichia Coli se encuentran fuera de norma. Habrá que tomar medidas correctivas y de prevención para evitar la contaminación del agua del pozo.

Su agua no puede ser consumida por las personas.

4.3 Conclusión

Resulta evidente que la calidad del agua al sur de Ahuachapán no experimentó ninguna mejora durante el período en que se llevaron a cabo los estudios de 1999 a 2005, por el contrario, su calidad decae con el paso del tiempo debido a factores como el crecimiento poblacional en torno a los recursos hídricos, la falta de políticas de saneamiento por parte de Gobierno Central y gobiernos municipales y del precario sistema de agua potable.

Son cientos de personas que a diario utilizan el agua para beber, cocinar, lavar ropa, utensilios y para su higiene personal, pero en lugar de beneficiarse de ello, les acarrea grandes enfermedades como diarrea, tifoidea parasitosis y el cólera, entre otras.

En estos casos el agua, en lugar de ser la vida se convierte en instrumento de enfermedad y muerte.

Una tarea fundamental es, entonces, dedicar especial atención a la conservación de los recursos hídricos de El Salvador, pues de ello depende gran parte de su desarrollo.

5. Conclusiones

- La calidad del agua de la región del Sur de Ahuachapán está en un punto crítico: contaminada principalmente por heces fecales de humanos y animales de sangre caliente; esto restringe su uso a actividades mínimas o poco exigentes.
- Que el agua subterránea esté contaminada principalmente por coliformes fecales, puede significar dos cosas: que los estratos por los que atraviesa no son capaces de remover las bacterias o que está sufriendo infiltración directa de aguas negras.
- La contaminación de los diferentes cuerpos de agua se puede prevenir realizando actividades encaminadas a evitar que cuerpos infecciosos de cualquier procedencia ingresen a los mantos acuíferos.
- La temperatura, la DBO, la DQO, los nitratos y los fosfatos son los principales parámetros indicativos para medir la calidad del agua y la mayoría de los ríos muestreados presentan altos índices de contaminación.
- Los parámetros hierro, manganeso, calcio, dureza, alcalinidad, sodio, potasio, sílice y bióxido de carbono tienen importancia

- desde el punto de vista técnico, ya que a través de ellos se puede saber si el agua necesita ser tratada para mejorar su calidad y evitar daños en las tuberías e instalaciones de los sistemas.
- Es necesario dar continuidad a los monitoreos y realizar análisis sobre los principales indicadores de contaminación para medir el impacto causado en la calidad del agua luego de la tormenta que afectó al país en el mes de octubre de 1989 y que causó derrumbes e inundaciones en diferentes sectores.
- Es importante instalar capacidades en los actores locales que les permitan tener un mejor control de la calidad del agua de consumo humano en sus comunidades.
- La información de este documento aún es insuficiente y hace falta realizar más estudios de esta naturaleza que la complementen.
- Los resultados de los análisi de los parámetros físicosquímicos están elevados en la mayoría de los sitios muestreados.

6. Recomendaciones

Fuente de abastecimiento

Es el punto del cual se desvía o aparta el agua, temporalmente, para ser usada por los seres humanos y que luego la devuelven como agua de desperdicio; ésta puede volver a su fuente original o no; dependiendo de cómo se dispongan las aguas usadas

- Las alcaldías, a través de su Unidad Ambiental, deben coordinar con las diferentes instituciones presentes en la zona la entrega de copias de los estudios de calidad de agua realizados y que sea dicha Unidad quien lleve un registro ordenado de la calidad del agua de la región.
- Los resultados positivos en los análisis microbiológicos demuestran una contaminación reciente, por lo tanto se debe realizar una inspección para conocer qué la genera y tomar las medidas correctivas correspondientes a fin de evitar el ingreso de aguas residuales, excretas, basura o cualquier otro contaminante que altere la calidad del agua.
- Realizar monitoreos a la calidad del agua de la Región C según lo establece la norma salvadoreña.

7. Bibliografía

2005 Programa hidrológico internacional de la UNESCO para América Latina y el Caribe; Comité Regional de Recursos Hidráulicos; Servicio Nacional de Estudios Territoriales, Ministerio de Medio Ambiente y Recursos Naturales: Balance Hídrico Dinámico e Integrado de El Salvador 139 p.

2004 Consorcio CARE-SACDEL-FUNDAMUNI-SalvaNATURA

Acuerdo cooperativo N° 519-A-0-99-00084-00 Proyecto Agua "Acceso, gestión y uso racional del agua". Plan de manejo de la microcuenca del río Tapahuashuya, municipio de Guaymango, departamento de Ahuachapán.

2004 Consorcio CARE-SACDEL-FUNDAMUNI-SalvaNATURA

Acuerdo cooperativo Nº 519-A-0-99-00084-00 Proyecto Agua "Acceso, gestión y uso racional del agua". Plan de manejo de la microcuenca del río Faya, municipio de Jujutla, departamento de Ahuachapán.

2004 Consorcio CARE-SACDEL-FUNDAMUNI-SalvaNATURA

Acuerdo cooperativo Nº 519-A-0-99-00084-00 Proyecto Agua "Acceso, gestión y uso racional del agua". Plan de manejo de la microcuenca del río Ahuachapío, municipio de San Francisco Menéndez, departamento de Ahuachapán.

2004 Consorcio CARE-SACDEL-FUNDAMUNI-SalvaNATURA

Acuerdo cooperativo Nº 519-A-0-99-00084-00 Proyecto Agua "Acceso, gestión y uso racional del agua". Plan de manejo de la microcuenca del río Santa Rita, municipio de San Francisco Menéndez, departamento de Ahuachapán.

2004 Consorcio CARE-SACDEL-FUNDAMUNI-SalvaNATURA

Acuerdo cooperativo Nº 519-A-0-99-00084-00 Proyecto Agua "Acceso, gestión y uso racional del agua". Plan de manejo de la microcuenca del río Santa Pedro, municipio de San Pedro Puxtla, departamento de Ahuachapán.

2004 Consorcio CARE-SACDEL-FUNDAMUNI-SalvaNATURA

Acuerdo cooperativo Nº 519-A-0-99-00084-00. Proyecto Agua. "Acceso, gestión y uso racional del agua". "Estudios de factibilidad para introducción de sistemas de agua potable".

2003 Visión Mundial-Proyecto Agua

Informe técnico sobre el diagnóstico biofísico de la microcuenca Hoja de Sal.

2000 Consorcio CARE-SACDEL-FUNDAMUNI-SalvaNATURA

Acuerdo cooperativo Nº 519-A-0-99-00084-00 Proyecto Agua "Acceso, gestión y uso racional del agua". Ciclo del agua y la microcuenca. Técnicas participativas para la educación ambiental, San Salvador, El Salvador.

2000 Ministerio de Medio Ambiente y Recursos Naturales

Medio Ambiente 2000, El Salvador, Centroamérica (CD-ROM Nº 2). Colección de CD-ROM.

1998 Ing. Giuseppe Repetto / Ana Corlia E. Morán

Apuntes Sobre la Calidad de las Aguas de Uso Potable. p 72. Cooperación Italiana, Ministerio de Salud Pública y Asistencia Social de El Salvador.

1988 Departamento de Sanidad del Estado de Nueva York

Manual de tratamiento de aguas. 205 p. Editorial LIMUSA, México, décima impresión.

1984 Ulric P. Gibson / Rexforf D. Singer

Manual de los pozos pequeños,181 p. Editorial LIMUSA, México, tercera impresión.

8. Anexos

Anexo 1. Categorización de la calidad del agua avalada por la Organización Mundial de la Salud (OMS)

Parámetros	Unidades	Categorías				
Faramenos		1	2	3	4	
Temperatura del agua	°C	21.5	25	25	30	
рН	-	6.5-8.5	6.5-8.5	6-8.5	6-9	
Conductividad	ms/cm	1	1	1	2.5	
OD	mg/l	7.1	6.7	3	2	
DBO	mg/l	3	5	7	15	
DQO	mg/l	30	30	30	60	
Nitrógeno	mg/l	1	2	3	10	
Fosfatos	mg/l	0.4	0.7	0.7	20	
Coliformes fecales	NMP/100 ml	20	200	2,000	10,000	
Coliformes totales	NMP/100 ml	50	2,000	20,000	50,000	

Categoría 1

Todos los usos exigentes: fácil potabilización; vida piscícola exigente; posibles zonas de baño; regadíos exigentes; usos industriales exigentes y especial interés ecológico.

Categoría 2

Amplios usos, con precauciones: potabilización con tratamientos intermedios; vida piscícola no tan exigente; algunas zonas de baño muy localizadas; regadíos no tan exigentes y usos industriales menos exigentes.

Categoría 3

Usos restringidos: potabilización pero con tratamientos avanzados; posible vida piscícola de especies muy resistentes; regadíos poco exigentes y usos industriales poco exigentes.

Categoría 4

Usos mínimos: regadíos y usos industriales muy poco exigentes.

UICN-Unión Mundial para la Naturaleza Oficina Regional para Mesoamérica, Apdo. Postal 146-2150, Moravia, San José, Costa Rica, C.A. Tel.: (506) 241-0101 y Fax: (506) 240-9934

Correo electrónico: mesoamerica@iucn.org

Página Web: iucn.org/mesoamerica

